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Abstract14

The active-time scheduling problem considers the problem of scheduling preemptible jobs with15

windows (release times and deadlines) on a parallel machine that can schedule up to g jobs during16

each timestep. The goal in the active-time problem is to minimize the number of active steps,17

i.e., timesteps in which at least one job is scheduled. In this way, the active time models parallel18

scheduling when there is a fixed cost for turning the machine on at each discrete step.19

This paper presents a 9/5-approximation algorithm for a special case of the active-time scheduling20

problem in which job windows are laminar (nested). This result improves on the previous best21

2-approximation for the general case.22
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1 Introduction27

The active-time scheduling is the problem of scheduling jobs with windows on a parallel28

machine so as to minimize the number of timesteps during which machine is on, or active.29

In the active-time problem [2], we are given as input a set J of n jobs, where each job30

j ∈ J has an associated processing time pj , release time rj , and deadline dj ≥ rj + pj ,31

all integers. The jobs are scheduled on a parallel machine that can execute up to g jobs32

during each step, where g is a positive integer specified as part of the input. The input33

thus comprises the jobs with their processing times pj , release times rj , and deadlines dj , as34

well as the machine parameter g, all of which are integers. Time is organized into discrete35

(integer) steps or slots, and preemption is allowed but only at slot boundaries. We call the36

time interval [rj , dj) the job j’s window. Each job j must be fully scheduled within its37

window, i.e., each job must be assigned to pj timesteps, where each timestep t to which the38

job is assigned satisfies rj ≤ t < dj . Moreover, at most g jobs can be scheduled at any step.39

We say that a timestep t is active if the schedule assigns at least one job to step t. The40

goal in the active-time scheduling problem is to find a schedule with minimum number41

of active steps that schedule all jobs within their windows.42
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28:2 Nested Active-Time Scheduling

We assume throughout that the instance is feasible. Testing feasibility (and producing43

a schedule) is an easy exercise applying max flow. In fact, this flow-based feasibility test44

generalizes to any given subset of active timesteps (see, e.g., Appendix A.1 of [10]). The45

active-time scheduling problem thus boils down to figuring out which slots should be activated.46

Problem History47

Chang, Gabow, and Khuller [2] introduce the active-time problem and show that the problem48

can be solved optimally in polynomial time when the processing times are all one. They also49

investigate various generalizations of the problem. For arbitrary integer processing times,50

Chang, Khuller, and Mukherjee [3] give two approximation algorithms. First, they give a51

rather complex rounding of the natural linear program (LP) that yields a 2-approximation.52

They also show that the integrality gap of the natural LP is 2, so the rounding is tight.53

Second, they show that, any minimal feasible solution yields a 3-approximation. A54

minimal feasible solution is a set of active slots such that (i) scheduling the jobs on those slots55

is feasible, and (ii) deactivating any slot would render the schedule infeasible. Consequently,56

a simple greedy algorithm (choose an arbitrary active slot and deactivate it if the resulting57

set of slots is still feasible) is a 3-approximation for the problem. Kumar and Khuller [10]58

give a greedy 2-approximation algorithm following the same general strategy of deactivating59

slots until reaching a minimal feasible solution, but they choose slots more carefully. They60

also exhibit inputs on which their algorithm achieves no better than a 2− 1/g approximation,61

so the analysis is effectively tight.62

A key challenge for improving the approximation ratio for the general active-time problem63

is that the natural linear program has an integrality gap of at least 2 − O(1/g), which64

converges to 2 as g → ∞. There is also no clear avenue to improve the 2-approximation65

obtained by Kumar and Khuller’s [10] greedy approach. Călinescu and Wang [6] suggest66

a stronger LP formulation that they conjecture has lower integrality gap, but they only67

show that the gap is at least 5/3—whether it can lead to better approximations for general68

instances remains unknown. Recently, Davies et al.[7] study the active time problem in the69

batch scheduling model.70

Nested active-time scheduling71

To push past the barriers for the general version of the problem, this paper instead considers72

a special case of the active-time problem in which the job windows are laminar (nested).73

That is, for each pair of jobs i, j, either the intervals [ri, di) and [rj , dj) are disjoint (meaning74

either di ≤ rj or dj ≤ ri)), or one of the intervals is fully contained in the other (i.e., either75

ri ≤ rj < dj ≤ di or rj ≤ ri < di ≤ dj).76

Our main result is a 9/5-approximation algorithm for the active-time problem with77

laminar job windows. Since the simple example exhibiting the integrality gap [3] of 2 for the78

natural LP is a nested instance, a different LP formulation is needed. Our algorithm starts79

by solving a stronger linear program (LP) for the problem to produce a fractional solution,80

then performing a new rounding process over the tree of job windows. The algorithm itself81

is not overly complex, but the analysis is not at all straightforward.82

Restricting our attention to nested windows gives us two advantages. First, assuming83

laminar windows allows us to augment the LP to obtain a smaller integrality gap than for the84

general case. Notably, our LP includes an additional “ceiling constraint,” which represents a85

stronger lower bound on the number of slots required in each window to the volume of jobs86

therein. It is not clear how to take advantage of this same constraint in the general version87
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of the problem. As exhibited by our algorithm the integrality gap of our LP on the nested88

version of the problem is at most 9/5, which provides a separation between the nested and89

general versions of the problem. Secondly, the rounding process itself is inherently tied to the90

fact that nested windows form a tree. Even ignoring the issue of the larger integrality gap91

for the general case, it is not clear how to perform a similar rounding for general windows.92

In Section 5, we compare our strengthened LP formulation to that proposed by Călinescu93

and Wang’s [6] and show that both formulations exhibit an integrality gap of at least 3/2 for94

nested instances. In Section 6, we show that the nested active time problem is NP complete.95

Related work96

The objective of the active-time problem is motivated by an application to energy minimization.97

In this context, the machine can be turned off when no jobs are being executed and it takes98

the same amount of energy to run regardless of how many jobs are running—but it has a fixed99

capacity g of how many jobs it can process per active time slot. Energy-aware scheduling100

is an active area of research [1, 8] that is motivated by the pressing need of modern data101

centers whose large energy footprint accounts for most of their running costs [13].102

There are many variations and generalizations of the basic setup studied in this paper.103

Below we consider two of its most closely related variants. The reader is referred to the104

excellent survey by Chau and Li [4] for more related results such as online algorithms for105

active-time scheduling.106

A natural generalization of the basic setup studied in this paper is to have, instead of a107

single interval, a collection of intervals where each job can be scheduled. Chang et al. [2]108

show that this generalization is NP-hard when g ≥ 3 even when jobs are unit-length, but109

that it can be solved in polynomial time when g = 2. Furthermore, the problem admits an110

Hg-approximation for general g via Wolsey’s submodular cover framework [14].111

Another related model is the busy-time problem where jobs cannot be preempted and we112

have parallel machines. This problem is much harder as even testing feasibility for a fixed113

number of machines is NP-hard. Indeed, the best approximation algorithm for minimizing the114

number of machines needed when g = 1 is the O
(√

log n
log log n

)
-approximation of Chuzhoy et115

al. [5]. Koehler and Khuller [9] show that it is possible minimize the number of machines use116

and simultaneously achieve a O(1)-approximation on the busy-time objective for instances117

with uniform processing time; for general instances with arbitrary processing times they can118

approximate the number of machines by a O
(

log pmax
pmin

)
factor while keeping the constant119

approximation bound for the busy-time objective. Liu and Tang [11] studies a generalized120

busy-time problem on heterogeneous machines and they show an O(1)-approximation al-121

gorithm in the offline setting and an O(max/min job length ratio)-competitive algorithm in122

the online setting.123

2 Preliminaries124

For an integer p, We use [p] to represent integers from {1, 2, ..., p}. Given an instance of the125

nested active time problem, we define its tree T as follows. Each tree node i is associated126

with an interval K(i) such that K(i) = [rj , dj) for some j ∈ J . If there are several jobs127

with the same interval, we only create a single tree node. A tree node i′ is a child of i if128

K(i′) ⊊ K(i) and no other node interval is strictly between K(i) and K(i′), i.e, there is no129

node i′′ such that K(i′) ⊊ K(i′′) ⊊ K(i). The descendants and ancestors of a node i are130

denoted Des(i) and Anc(i), respectively. Note that both Des(i) and Anc(i) include i itself.131

ISAAC 2022



28:4 Nested Active-Time Scheduling

To exclude x, we use Des+(i) = Des(i)\{i} and Anc+(i) = Anc(i)\{i}. We define par(i) to132

be the parent node of i. W.l.o.g we can assume T is indeed a tree (instead of a forest) since133

otherwise the instance can be broken into several independent ones.134

We assume that the tree contains m nodes and each node is associated with an unique id135

in [m]. Now, each job j’s interval is associated with a node in the tree. For a job j, define136

k(j) to be the tree node i with K(k(j)) = [rj , dj); we say j belongs to the node i if i = k(j).137

For jobs j1 and j2, if rj1 = rj2 and dj1 = dj2 , then k(j1) = k(j2). Given a node i and a job138

subset J ′ ⊆ J , J ′(i) = {j ∈ J ′ | k(j) = i} is the set of jobs in J ′ belonging to i. Note that at139

least one job belongs to each node. Define the length of a node i, which is denoted as L(i),140

as the |K(i)| −
∑

i′:par(i′)=i |K(i′)|, i.e, the number of time slots in the interval K(i), but not141

in K(i′) for any child node i′ of i.142

For simplicity, we use the following shorthand. Given a function or vector f and a set S,143

if f outputs reals, then f(S) =
∑

e∈S f(e) or f(S) =
∑

e∈S fe. If f outputs subsets, then144

f(S) =
⋃

e∈S f(e) or f(S) =
⋃

e∈S fe.145

We say that a node i is rigid if a feasible solution must open the entire interval K(i).146

For our rounding algorithm, it will be convenient if the tree is canonical.147

▶ Definition 1 (Canonical trees). A tree is canonical if it is a binary tree and each leaf node148

is rigid.149

First, we transform an arbitrary tree to a binary tree. If a parent node i contains several150

children nodes i1, i2, ..., it, we will create several virtual nodes so that each node contains at151

most 2 children. Each virtual node’s interval is the union of its children’s intervals. There152

are no jobs associated with the virtual nodes and the length of a virtual node i′ satisfying153

L(i) = 0. Notice that this transformation adds at most t virtual nodes for a node with t154

children. In total, this transformation only adds m virtual nodes to a tree that had m nodes155

originally. In the resulting tree, only internal nodes can be virtual so each leaf node must156

have at least one job associated with it.157

We perform one final transformation to make each leaf node rigid. For a leaf node i, let158

j ∈ J(i) be a job in i with the longest processing time. If pj = L(i), then we leave i and the159

jobs therein unchanged. Otherwise, we can assume that j is scheduled in the first pj steps of160

i because j is the longest job in the leaf node and all jobs in the leaf node could choose the161

leaf’s interval to fit in. We transform the instance by creating a virtual child node i′ of the162

leaf i with interval corresponding to the first pj steps of K(i), and we reduce j’s window to163

match i′’s. Notice this transformation does not change our solution for the original tree.164

3 Algorithm165

3.1 Linear Program166

The linear program is LP (1), which is given in Figure 1(a). In the LP, x(i) denotes the167

number of time slots opened in node i, excluding times slots in i’s children. y(i, j) denotes168

the amount of job j that is scheduled in node i. In the LP, OPTi denotes the smallest169

number of slots to schedule the jobs in J(Des(i)).170

The objective is to minimize
∑

i∈[m] x(i). (2) ensures that every job j is scheduled in at171

least pj time slots. (3) ensures that the total number of jobs scheduled in x(i) is at most172

g · x(i), for each node i ∈ [m]. (4) requires that the number of open time slots in a node173

x(i) is at most the interval length L(i) of node i. (5) says that we could give at most x(i)174

time slots for a job j. (6) restricts that for each job j ∈ J , j can only be put into nodes in175
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min
∑

i∈[m]

x(i) s.t. (1)

∑
i∈Des(K(j))

y(i, j) ≥ pj , ∀j (2)

∑
j∈J(Anc(i))

y(i, j) ≤ g · x(i), ∀i (3)

x(i) ≤ L(i), ∀i (4)
y(i, j) ≤ x(i), ∀i, j (5)

y(i, j) = 0, ∀i, j /∈ J(Anc(i))
(6)∑

i′∈Des(i)

x(i′) ≥ 2, ∀i, OPTi ≥ 2 (7)

∑
i′∈Des(i)

x(i′) ≥ 3, ∀i, OPTi ≥ 3 (8)

(a) Linear program for active time scheduling. By default we
restrict i ∈ [m] and j ∈ J .

(b) The open slots from an LP solution

(c) The open slots after performing the
LP transformation

Figure 1 (a) is the linear program for active time schuduling. (b) and (c) are an example of a
tree before and after running the LP transformation in Lemma 2. The dark slots represent slots
have jobs scheduled in them, and the white slots are closed.

Des(K(j)). (7) and (8) are the key constraints that makes the LP stronger. They are clearly176

valid; moreover, checking if OPTi ≥ 2 (OPTi ≥ 3) can be done easily.177

For simplicity, given a node set V ⊂ [m] and J ′ ⊂ J , y(V, J ′) =
∑

i∈V,j∈J′ y(i, j); if either178

V or J ′ is a singleton, we can replace it by the unique element in it. Let x(S) =
∑

i∈S x(i)179

for every S ⊆ [m].180

After running the LP and getting a solution (x, y), we will perform a transformation on181

the solution.182

3.2 Transformation of LP Solution183

▶ Lemma 2. Given a feasible LP solution, we can efficiently output another feasible LP184

solution such that for any pair of nodes i1, i2 such that i2 ∈ Des+(i1), if x(i2) < L(i2), then185

x(i1) = 0.186

Proof. Suppose there are nodes i1, i2 with i2 ∈ Des+(i1) and x(i2) < L(i2) and x(i1) > 0.187

Then let θ = min{L(i2)−x(i2), x(i1)} > 0. We can move θ fractional open slots from i1 to i2.188

For every job j, we move θ
x(i1) y(i1, j) fractional assignment of j from i1 to i2. More specifically,189

let (x′, y′) = (x, y) initially. We decrease x′(i1) by θ and increase x′(i2) by θ. For every190

j ∈ J , we decrease y′(i1, j) to x′(i1)
x(i1) y(i1, j) and increase y′(i2, j) to y′(i2, j) + θ

x(i1) y(i1, j).191

Notice that every job j that can be assigned to i1 can also be assigned to i2. It is not hard192

to show that all constraints remain satisfied by the new solution (x′, y′). Finally we update193

(x, y)← (x′, y′).194

Notice that after the operation, we have either x(i1) = 0 or x(i2) = L(i2). By repeating195

the procedure a polynomial number of times, we can find a solution (x, y) satisfying the196

ISAAC 2022



28:6 Nested Active-Time Scheduling

property of the lemma. ◀197

An example of of the LP transformation is shown in Figure 1(b) and 1(c). Lemma 2198

implies that for any i with x(i) > 0, all of its strict descendants are fully open. We let I be199

the set of topmost nodes i with x(i) > 0; those are the nodes i with x(i) > 0 but all its strict200

ancestors i′ have x(i′) = 0.201

▷ Claim 3. The following properties hold for I:202

(3a) No node in I is a strict ancestor of another node in I.203

(3b) Des(I) contains all leaves.204

(3c) Every i ∈ I has x(i) > 0.205

(3d) For any i ∈ I and i′ ∈ Des+(i), we have x(i′) = L(i′).206

(3e) For any i ∈ I and i′ ∈ Anc+(i), we have x(i′) = 0.207

We make one modification to the tree that does not change the instance. For every208

i ∈ Anc+(I), we can assume that i has exactly two children: if i has only one child, we209

remove it from the tree and connect its parent directly to its children. This does not change210

the instance since x(i) = 0.211

We also want to mention for any node i such that x(Des(i)) ∈ (1, 2), i has one child i′,212

which is a leaf with x(i′) = L(i′) = 1 because of the rigidity of the leaf node.213

3.3 Rounding Algorithm to Obtain an Integral Vector x̃ ∈ {0, 1}[m]
214

The rounding algorithm that constructs our integral x̃ is given in Algorithm 1.215

Algorithm 1 Rounding Algorithm

1: let x̃(i)← ⌊x(i)⌋,∀i ∈ I and x̃(i)← x(i),∀i ∈ [m] \ I.
2: for every node i ∈ Anc(I) from bottom to top
3: while 9x(Des(i))

5 ≥ x̃(Des(i)) + 1
4: if ∃i′ ∈ Des(i) with x̃(i′) < x(i′) then
5: choose such an i′ arbitrarily
6: let x̃(i′)← ⌈x(i′)⌉
7: else
8: break

Clearly, the number of open slots is at most 9x([m])
5 .216

▶ Lemma 4. After running the Algorithm 1, x̃([m]) ≤ 9x([m])
5 .217

4 Feasibility of x̃218

In this section, we show that the rounded time slot x̃ is a feasible solution.219

4.1 A Necessary and Sufficient Condition220

First we will give an if-and-only-if condition. From now on, for any set J ′ ⊆ J , we define221

J ′(i) = J(i) ∩ J ′ for every i ∈ [m] and J ′(S) = J(S) ∩ J ′ for every S ⊆ [m].222

▶ Lemma 5. Given an integer solution x̃ for the LP, x̃ is feasible if and only if for every223

subset J ′ ⊆ J of jobs, we have224 ∑
i∈[m]

min{|J ′(Anc(i))|, g} · x̃(i) ≥ p(J ′). (9)225

226
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Proof. The only if part is easy to see. Any node i can hold at most min{|J ′(Anc(i))|, g} ·227

x̃(i) volume of jobs in J ′. All the jobs in J ′ should be assigned. If x̃ is feasible, then228 ∑
i∈[m] min{|J ′(Anc(i))|, g} · x̃(i) ≥ p(J ′).229

Now we prove the if part, by considering the contra-positive of the statement and applying230

the maximum-flow-minimum cut theorem. Assume x̃ is not feasible. We construct a 4-layer231

directed network H = (VH , EH), where the nodes from left to right are {s}, J, [m] and {t}.232

There is an edge from s to every j ∈ J with capacity pj , an edge from every j ∈ J to every233

i ∈ Des(k(j)) with capacity x̃(i), and an edge from every i ∈ [m] to t with capacity g · x̃(i).234

For a subsets V ′ ⊆ VH and a node v ∈ VH \ V ′, we use EH(V ′, v) to denote the set of edges235

from V ′ to v.236

As x̃ is not feasible, there is a s-t cut in the network with capacity less than p(J).237

Let (A, B) be the cut: s ∈ A, t ∈ B and A ⊎ B = VH . Its cut value, which is p(B ∩238

J) +
∑

i∈B∩[m] |EH(A ∩ J, i)| · x̃(i) + g · x̃(A ∩ [m]), is less than p(J). This is equivalent to239 ∑
i∈B∩[m] |EH(A∩J, i)|·x̃(i)+g ·x̃(A∩[m]) < p(A∩J). Let J ′ = A∩J . Then the contribution240

of a node i ∈ [m] to the left-side is either |EH(J ′, i)| · x̃(i) (if i ∈ B), or g · x̃(i) (if i ∈ A),241

which is lower bounded by min{|EH(J ′, i)|, g} · x̃(i). Noticing |EH(J ′, i)| = |J ′(Anc(i))|, we242

have
∑

i∈[m] min{|J ′(Anc(i))|, g} · x̃(i) < p(J ′). This finishes the proof of the if part. ◀243

▶ Lemma 6. In Lemma 5, it is sufficient to consider the sets J ′ ⊆ J satisfying the following244

property:245

(6a) pj > x̃
({

i ∈ Des(K(j)) : |J ′(Anc(i))| ≤ g
})

,∀j ∈ J ′.246

Proof. Suppose J ′ does not satisfy the property. Then for some j ∈ J ′ we have x̃
({

i ∈247

Des(K(j)) : |J ′(Anc(i))| ≤ g
})
≥ pj . Then removing j from J ′ will decrease the left side of248

(9) by x̃
({

i ∈ Des(K(j)) : |J ′(Anc(i))| ≤ g
})

, and the right side by pj . Thus, the inequality249

(9) for J ′ will be implied by the inequality for J ′ \ {j}. ◀250

Once we have the if-and-only-if condition for the feasibility, the main lemma we need to251

prove is the following:252

▶ Theorem 7. For every subset J ′ ⊆ J of jobs satisfying the property in Lemma 6, we have253

(9).254

The rest of the section is dedicated to the proof of Theorem 7. From now on we fix a255

subset J ′ ⊆ J satisfying the property of Lemma 6. Our goal is to prove (9).256

For notational convenience, let ui = min{|J ′(Anc(i))|, g} and wi = uix(i) and w̃i = uix̃(i)257

for every i ∈ [m]. Thus, (9) is simply written as p(J ′) ≤ w̃([m]). Recall that y(V, J ′) =258 ∑
i∈V,j∈J′ y(i, j) for a given V ⊆ [m], J ′ ⊆ J . We have p(J ′) = y([m], J ′) = y(Des(I), J ′)259

and w̃([m]) = w̃(Des(I)). Thus, we need to prove260

y(Des(I), J ′) ≤ w̃(Des(I)), (10)261
262

for every J ′ ⊆ J satisfying the property in Lemma 6.263

The following simple claim will be used multiple times:264

▷ Claim 8. For every i ∈ [m], we have y(i, J ′) ≤ wi = uix(i).265

Proof. If ui = g, we use (3) in the LP. If ui < g, then we use (5) and (6). ◀266

ISAAC 2022



28:8 Nested Active-Time Scheduling

4.2 Construction of Triples267

For nodes i ∈ [m] \ I, we have x̃(i) = x(i). For nodes i ∈ I with x(Des(i)) /∈ (1, 10
9 ), we268

have x̃(i) = ⌈x(i)⌉ since 9x(Des(i))
5 ≥ ⌈x(Des(i))⌉. Thus, for these nodes i, Claim 8 implies269

y(i, J ′) ≤ w̃i. The critical nodes are those i ∈ I with x(Des(i)) ∈ (1, 10
9 ).270

With this in mind, we classify nodes in I into two types: a node i ∈ I is of271

type-B if x(Des(i)) ∈ {1} ∪ [ 4
3 ,∞), and272

type-C if x(Des(i)) ∈ (1, 4
3 ).273

In the definition, we use 4
3 instead of 10

9 to create some buffers. Furthermore, a type-C node274

i ∈ I is of275

type-C1 if x̃(Des(i)) = 1, and276

type-C2 if x̃(Des(i)) = 2.277

At most 2 type-C nodes Before going to the triples, we first solve the case at most 2278

type-C nodes are in I. At the same time, if 1 type-B node exists, then all type-C nodes are279

type-C2.280

▶ Lemma 9. If there are at most 2 type-C nodes and at least 1 type-B node in I, then all281

type-C are type-C2.282

Proof. Let i1 and i2(if exists) be the type-C node and i3 be the type-B node. Notice that283

9
5 x(i3)−⌈x(i3)⌉ ≥ 0.4. We have 9

5 (x(i1)+x(i3)) ≥ x(i1)+0.8+⌈x(i3)⌉+0.4 ≥ ⌈x(i1)⌉+⌈x(i3)⌉284

and 9
5 (x(i1)+x(i2)+x(i3)) ≥ x(i1)+0.8+x(i2)+0.8+⌈x(i3)⌉+0.4 ≥ ⌈x(i1)⌉+⌈x(i2)⌉+⌈x(i3)⌉.285

In either case, algorithm 1 can afford to round up all type-C nodes. ◀286

Based on Lemma 9, if at least one type-B node is in I, then we already rounded up all287

type-C nodes. Assume that there is no type-B node in I, then we have x([m]) ≤ 2×4/3 = 8/3.288

Due to the LP constraint (7) and (8), x(i) are integer for all i ∈ [m] and this contradicts to289

the assumption that no type-B node is in I.290

More than 2 type-C nodes When we have at least 3 type-C nodes in I, we want to291

create disjoint triples of type-C nodes. Each triple contains 1 type-C1 node, and 2 type-C2292

nodes. Moreover, all the type-C1 nodes are contained in these triples. Later for each triple293

(i1, i2, i3) we constructed, we shall prove y(Des({i1, i2, i3}), J ′) ≤ w̃(Des({i1, i2, i3})). This294

will prove (10).295

The construction of triples are given in Algorithm 2. Notice that this is not a part of296

our algorithm for solving the active time scheduling problem; it is only used in the analysis.297

If we have a type-C1 node i1 and a type-C2 node i2 as brothers, then we say (i1, i2) is a298

C1C2-brother-pair. In our triples, we make sure that we do not break C1C2-brother-pairs:299

for such a pair (i1, i2), there must be some C2-node i3 such that (i1, i2, i3) is a triple we300

constructed.301

Algorithm 2 Construction of Triples

1: triples← ∅, set all type-C1 nodes as uncovered, and all type-C2 nodes as unused.
2: for every node i ∈ Anc(I) with |Des(i) ∩ I| ≥ 3 from bottom to top
3: while ∃ an uncovered type-C1 node i1 ∈ Des(i)
4: choose two unused type-C2 nodes i2, i3 ∈ Des(i), without breaking C1C2-brother-

pairs ▷ See Lemma 10 and
Lemma 11

5: add (i1, i2, i3) to triples, claim i1 is covered, and i2 and i3 are used.



Cao et al. 28:9

▶ Lemma 10. In Step 4 of Algorithm 2, there are at least two unused type-C2 nodes in302

Des(i).303

Proof. Let n1 and n2 be the number of type-C1 and type-C2 nodes in Des(i)∩ I respectively.304

Let n′ = n1 + n2. We shall prove n2 ≥ 2n1, which implies that we will not run out of type-C2305

nodes and proves the lemma.306

First, we consider the case where there is no type-B node in Des(i) ∩ I. Then n′ =307

|Des(i) ∩ I| ≥ 3. Moreover, n1 + 2n2 ≥ ⌊ 9n′

5 ⌋ or n1 = 0 by our rounding algorithm in308

Algorithm 1. In the latter case we clearly have n2 ≥ 2n1. So, we assume the former. Then309

n2 ≥ ⌊ 4n′

5 ⌋. Notice that ⌊ 4n′

5 ⌋ ≥
4n′

5 −
4
5 and thus ⌊ 4n′

5 ⌋ ≥
2n′

3 whenever n′ ≥ 6. One can310

check that when n′ ∈ {3, 4, 5} we have ⌊ 4n′

5 ⌋ ≥
2n′

3 . Therefore if n′ ≥ 3, we have ⌊ 4n′

5 ⌋ ≥
2n′

3 .311

So n2 ≥ 2n1.312

Now we consider the other case where there is at least one type-B node in Des(i) ∩ I. If313

n1 = 0, then n2 ≥ 2n1 and thus we assume n1 > 0. Then we have n1 + 2n2 ≥ ⌊ 9n′

5 + 2
5⌋, as314

the type B node i∗ have 9x(Des(i∗))
5 ≥ ⌈x(Des(i∗))⌉+ 2

5 . This implies n2 ≥ ⌊ 4n′

5 + 2
5⌋. Then315

n2 ≥ 2n′

3 as ⌊ 4n′

5 + 2
5⌋ ≥

2n′

3 for every integer n′ ≥ 0. Thus, n2 ≥ 2n1. ◀316

4.3 Proof of (10) Using the Triples317

In this section, we prove (10) by using the constructed triples. First, we show that they318

satisfy some good properties:319

▶ Lemma 11. For every (i1, i2, i3) ∈ triples, one of the following two conditions hold:320

(11a) i2, i3 ∈ Des+(par(i1)).321

(11b) i1 and i2 are brothers, and i3 ∈ Des+(par(par(i1))).322

Proof. Consider any type-C1 node i1. Let i∗ and i′ be the parent and brother of i1 respect-323

ively.324

First consider the case that i′ /∈ I. By (3a) and (3b), we have |Des(i∗) ∩ I| ≥ 3. By325

Algorithm 2 and Lemma 10, i′ will be covered when we are at the iteration i = i∗ in326

Algorithm 2. So, the first property holds.327

Then consider the other case that i′ ∈ I. Then i′ can not be of type-B since otherwise328

i1 should be of type-C2. i′ can not be of type-C1 since we could open 3 slots in Des(i∗).329

Therefore i′ must be of type-C2 and (i1, i′) is a C1C2-brother-pair. In this case the second330

property holds. ◀331

See Figure 2 for the two cases obtained in Lemma 11, which will be used again in the332

proof of the following Lemma:333

▶ Lemma 12. For every (i1, i2, i3) ∈ triples, we have334

y(Des({i1, i2, i3}), J ′) ≤ w̃(Des({i1, i2, i3})).335
336

Proof. Recall that i1 is of type C1 and i2 and i3 are of type-C2. Let i′
1, i′

2 and i′
3 be the337

children of i1, i2 and i3 respectively. By Lemma 11, either a or b holds.338

We first assume a. Let i = par(i1). See Figure 2(a) for all illustration of nodes used in339

this case.340
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i1

i′1

i

i2

i′2

i3

i′3

i1

i′1

i2

i′2

i

i3

i′3

(a) (b)

Figure 2 The two cases in Lemma 11 and 12.
.

By (7) in the LP, J(Des(i1)) can be scheduled in the one slot in i′
1 since x(Des(i1)) < 2.341

That is, all the jobs in the set has size 1 and there are at most g of them. So, we have342

y(Des(i1), J ′(Des(i1))) ≤ |J ′(Des(i1))| ≤ ui′
1
x(i′

1). (11)343

y(Des(i1), J ′(Anc+(i1))) ≤ 10
9 min{|J ′(Anc+(i1))|, g}344

≤ (x̃(i2)− x(i2) + x̃(i3)− x(i3)) min{|J ′(Anc+(i1))|, g}345

≤ (x̃(i2)− x(i2))ui2 + (x̃(i3)− x(i3))ui3 (12)346

y(Des({i2, i3}), J ′) ≤ ui2x(i2) + ui′
2
x(i′

2) + ui3x(i3) + ui′
3
x(i′

3) (13)347
348

The first inequality of (11) is by that all jobs in J ′(Des(i1)) have size 1, and the second349

one is by ui′
1

= min{|J ′(Anc(i′
1))|, g} ≥ |J ′(Des(i1))| and x(i′

1) = 1. The first inequality350

of (12) is by that x(Des(i1)) < 10
9 . The second one follows from x̃(i2) − x(i2) ≥ 2

3 and351

x̃(i3)− x(i3) ≥ 2
3 . The last one used that every job in J ′(Anc+(i1)) can be assigned to i2352

and i3. (13) is by Claim 8.353

Adding (11), (12) and (13), we have354

y(Des({i1, i2, i3}), J ′) ≤ ui′
1
x(i′

1) + ui2 x̃(i2) + ui′
2
x(i′

2) + ui3 x̃(i3) + ui′
3
x(i′

3)355

= w̃(Des({i1, i2, i3}))356
357

Now we consider the case that b holds. Let i = par(i1) = par(i2). See Figure 2(b) for358

illustration of the nodes.359

First, if ui2 = g, then we have (x̃(i2)− x(i2))ui2 ≥ (x(i1)− x̃(i1))ui1 as x̃(i2)− x(i2) ≥ 2
3360

and x(i1)− x̃(i1) < 1
9 . This is w̃(i1) + w̃(i2) ≥ w(i1) + w(i2). Thus, y(Des({i1, i2, i3}), J ′) ≤361

w(Des({i1, i2, i3})) ≤ w̃(Des({i1, i2, i3})) as ∀i′ ∈ {i3, i′
1, i′

2, i′
3} we have w(i′) ≤ w̃(i′).362

So assume ui2 < g. As we assumed J ′ satisfies (6a), every job j ∈ J ′(Anc(i2)) has pj > 1.363

All jobs in J(i) have pj ≤ 2 since otherwise we would have x(Des(i)) ≥ 3 by LP constraint364

(2) and (5). Also all jobs in J(i2) have size 1. So all jobs in J ′(i) have size 2, and J ′(i2) = ∅.365



Cao et al. 28:11

Then we have366

y(Des(i1), J ′(Des(i1))) + |J ′(i)| ≤ |J ′(Des(i1))|+ |J ′(i)| ≤ ui′
1
x(i′

1). (14)367

y(Des(i1), J ′(Anc+(i))) ≤ 10
9 |J

′(Anc+(i))| ≤
(
x̃(i2)− x(i2) + x̃(i3)− x(i3)

)
|J ′(Anc+(i))|368

≤ (x̃(i2)− x(i2))|J ′(Anc+(i))|+ (x̃(i3)− x(i3))ui3 (15)369

y(Des({i2, i3}), J ′ \ J ′(i)) + |J ′(i)| ≤ |J ′(Anc+(i))| · x(i2) + ui′
2
x(i′

2) + ui3x(i3)370

+ ui′
3
x(i′

3) + |J ′(i)| · x̃(i2) (16)371372

The first inequality of (14) all jobs in J ′(Des(i1)) have size 1, and the second inequality373

is by that |J ′(Des(i1))|+ |J ′(i)| ≤ g since otherwise OPTi ≥ 3. The proof of (15) is similar374

to that of (12). Notice that every job in J ′(Anc+(i)) can be assigned to i2 and i3. The375

inequality in (16) used Claim 8 for i′
2, i3 and i′

3.376

Adding (14), (15) and (16), we get377

y(Des(i1, i2, i3), J ′ \ J ′(i)) + 2|J ′(i)|378

≤ ui′
1
x(i′

1) + (|J ′(Anc+(i)|+ |J ′(i)|)x̃(i2) + ui′
2
x(i′

2) + ui3 x̃(i3) + ui′
3
x(i′

3)379

= ui′
1
x(i′

1) + ui2 x̃(i2) + ui′
2
x(i′

2) + ui3 x̃(i3) + ui′
3
x(i′

3) = w̃(Des(i1, i2, i3)).380
381

Notice that y(Des(i1, i2, i3), J ′(i)) = p(J ′(i)) = 2|J ′(i)|, we have y(Des(i1, i2, i3), J ′) ≤382

w̃(Des(i1, i2, i3)). ◀383

With Lemma 12, we can prove (10). First
∑

i∈∗ y(Des(i), J ′) ≤
∑

i∈∗ w̃(Des(i)), where384

i ∈ ∗ is over all nodes in the triples we constructed. For all the other nodes i ∈ I, we have385

y(Des(i), J ′) ≤ w(Des(i)) ≤ w̃(Des(i)). Therefore we have y(Des(I), J ′) ≤ w̃(Des(I)), which386

is exactly (10). Combining with Lemma 4, we have following theorem,387

▶ Theorem 13. There exists a 1.8-approximation polynomial-time algorithm for the nested388

active-time problem.389

5 Integrality gap390

For the general (non-nested) version of the active scheduling problem, Călinescu and Wang [6]391

proposed a slightly stronger than our LP from Figure 1a and showed a non-nested instance392

where the integrality gap approaches 5/3 as g →∞. In this section, we show that their LP393

and our LP have an integrality gap of at least 3/2 on nested instances.394

To define their LP, we need some notation. Let T = [minj∈J rj , maxj∈J dj) denote the395

set of time steps between the earliest release time and the latest deadline. For an interval of396

time I = [t1, t2) for some t1, t2 ∈ T and a job j, let qj(I) denote the minimum number of397

slots within I that job j needs to occupy in a feasible solution even if all slots outside of I398

were active and available to j. The variable x(t) denotes the extent to which the slot t is399

active and y(t, j) denotes the extent to which job j is assigned to slot t. See Figure 3.400

▶ Lemma 14. The linear program in Figure 3 has an integrality gap of at least 3/2 on nested401

instances.402

Proof. The integrality gap instance consists of one long job j0 with processing time g and403

window [0, 2g), and g groups of g jobs. For 0 ≤ i < g, the i-th group consists of g jobs with404

unit processing time and window [2i, 2i + 2).405

Consider the following LP solution (x, y): open each slot t ∈ T = [0, 2g) to an extent406

of x(t) = (g + 2)/2g for a total of g + 2. For each 0 ≤ i < g, the LP schedules 1/2407
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min
∑
t∈T

x(t)

s.t.
∑

t∈[rj ,dj)

y(t, j) ≥ pj ∀j ∈ J

∑
j∈J

y(t, j) ≤ g · x(t) ∀t ∈ T

y(t, j) ≤ x(t) ∀t ∈ T ,∀j ∈ J

x(t) ≤ 1 ∀t ∈ T∑
t∈[t1,t2)

x(t) ≥
⌈∑

j∈J qj(I)
g

⌉
I = [t1, t2),∀t1 ∈ T ,∀t2 ∈ T

Figure 3 Călinescu and Wang’s linear program for active time scheduling [6]

unit of j0 and 1/2 unit of each job j in the i-th group in slots 2i and 2i + 1; that is,408

y(2i, j0) = y(2i + 1, j0) = 1/2 and y(2i, j) = y(2i + 1, j) = 1/2 for each job j in group i.409

We now argue that (x, y) satisfies the ceiling constraints of [6]’s LP; it is easy to check410

that the other constraints are satisfied. Consider an interval I. Since the long job j0’s window411

is [0, 2g) and j0 has length g, we have that qj0(I) = 0 if |I| ≤ g and qj0(I) = |I| − g if |I| > g.412

This is because there are 2g − |I| slots outside of I. For a job j in group i, since it has unit413

length, we have qj(I) = 1 if I contains its window [2i, 2i + 2) and qj(I) = 0 otherwise.414

Combining the above, the LP constraint on interval I is415 ∑
t∈I

x(t) ≥
⌈

max{0, |I| − g}+ g|{i | I ⊇ [2i, 2i + 2)}|
g

⌉
.416

The tightest constraints are when I is the union of windows of consecutive groups. Thus, it417

suffices to argue that these constraints are satisfied. Suppose I = [2i′, 2(i′ + k − 1) + 2), i.e.,418

it is the union of windows of k consecutive groups. Note that |I| = 2k419

If k ≤ g/2, then the LP constraint on I is
∑

t∈I x(t) ≥ k. This is satisfied since420

x2i + x2i+1 = (g + 2)/g for each group i. If k > g/2, then the LP constraint on I is421 ∑
t∈I x(t) ≥ 1 + k. This is also satisfied since

∑
t∈I x(t) = k(g + 2)/g = k + 2k/g > k + 1.422

Thus, (x, y) is a feasible solution to the LP that opens g + 2 slots fractionally.423

We claim that any integral solution (x′, y′) needs to open at least 3g/2 slots. Let k be424

the number of groups i such that y′ schedules at least one unit of the long job j0 in the425

window [2i, 2i + 2). Consider the window [2i, 2i + 2). Since there are g unit jobs that need426

to be scheduled in [2i, 2i + 2), x′ opens two slots in the window if y′ schedules j0 in the427

window and only one slot otherwise. Thus, y′ opens exactly g + k slots. Since each window428

[2i, 2i + 2) has only two slots, and j0 has length g, we have that k ≥ g/2. Therefore, any429

integral solution needs to open at least 3g/2 slots. Thus, the integrality gap of the LP is at430

least 3g
2(g+2) which converges to 3/2 for large g. ◀431

6 NP-COMPLETENESS432

In this section, we show that the decision version of the nested active time problem is NP433

complete. Very recently, Sagnik and Manish [12] showed the general case is NP complete.434
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Unfortunately, their proof uses crossing intervals (i.e., intervals that overlap but neither is435

included in the other). Our proof reduces the nested active time problem to a new problem436

that we call prefix sum cover, which is related to the classic set cover problem.437

Prefix sum cover problem.438

For any pair of d-dimensional vectors v = (v1, v2, ..., vd), w = (w1, w2, ..., wd) ∈ Rd, we say439

v ≺ w if and only if for all j ∈ [1, d],
∑

i≤j vi ≥
∑

i≤j wi. In the prefix sum cover problem,440

we are given n vectors u1, u2, ...un ∈ Nd
+, a target vector v ∈ Nd and an integer number k,441

and we want to find k vectors ul1 , ul2 , ..., ulk
such that

∑
i≤k uli

≺ v.442

Moreover, for the purposes of our reduction, we consider a restricted version of the443

problem. Let W be the maximum scalar that appears in any of the vectors u1, ..., un and444

v. First, we require that both d and W be bounded by some polynomial of n. For a vector445

w ∈ Nd, let [w]j be its j-th dimension value. Second, for each i ∈ [1, n], we require that446

[ui]1 ≥ [ui]2 ≥ ... ≥ [ui]d, and [v]1 ≥ [v]2 ≥ ... ≥ [v]d, i.e., all vectors are non-decreasing.447

Lastly, we require that all vectors are non-negative and integral.448

We show in Appendix 6 that prefix sum cover is NP complete even under these restriction.449

Remark: Notice that the prefix sum cover problem is almost the same as set cover450

problem except for the "order" relation. We can think of the set cover problem as requiring451

that each dimension of the sum vector is greater than the target vector, while in the prefix452

sum cover problem, the requirement is "prefix sum".453

Reduction454

Now we will reduce the prefix sum cover problem to the active time problem. Let ({u1, u2,455

. . . , un}, v, k) be the prefix sum cover instance. Our nested active time instance is defined by456

a set of jobs J and it uses p = dW machines. Our instance is made up of three kinds of jobs:457

For each vector ui, and each w ∈ [2, W ], we have p− |{j ∈ [1, d] | [ui]j ≥ w}| rigid unit458

length jobs, each with window consisting of a single slot [(i− 1)W + w− 1, (i− 1)W + w].459

For each vector ui, we also have
∑

j≤d[ui]j−d flexible unit jobs with window [(i−1)W, iW ].460

Finally, we have jobs that depend on the target vector. For each j ∈ [1, d], we have a job461

with length [v]j and window [0, nW ].462

We denote each of these sets of job with S1 (rigid jobs), S2 (flexible jobs associate with each463

ui vector), and S3 (jobs associated with the target vector).464

Let us try to schedule this instance, starting with S1. Since the jobs in S1 are rigid, we465

must open all slots in [(i− 1)W + 1, iW ]. Notice that each of these slots has at least p− d466

jobs in S1, so each of these time slots has at most d unused machines after scheduling S1.467

Next we will try to fit jobs from S2 into [(i− 1)W, iW ]. Observe that the total capacity468

in the window [(i − 1)W + 1, iW ] is p(W − 1) and that the jobs from S1 take up up469 ∑
w∈[2,W ](p− |{j ∈ [1, d] | [ui]j ≥ w}|) capacity. Further observe that470 ∑

w∈[2,W ]

(p− |{j ∈ [1, d] | [ui]j ≥ w}|) +
∑
j≤d

[ui]j − d = p(W − 1).471

Therefore, if we do not open the slot [(i− 1)W, (i− 1)W + 1], then the jobs from S1 and S2472

will use up all of the available capacity in the time window [(i− 1)W, iW ]. This is important,473

as it means that we cannot schedule any job from S3 in this window.474

We say that the time slots [(i − 1)W, (i − 1)W + 1] for i ∈ [n] are special. Since all475

non-special slots in [0, nW ] must be open, the problem boils down to opening as few special476

slots as possible to accommodate the jobs in S3.477
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Suppose we open the special time slot [(i− 1)W, (i− 1)W + 1]. We claim that all jobs in478

S2 will be assigned to the special time slot. Indeed, even after all S2 jobs are assigned to479

this slot, there are still p− (
∑

j≤d[ui]j − d) ≥ d unused machines in it, while we can only480

have at most d unused machines in each time slots in [(i− 1)W + 1, iW ] after scheduling S1.481

Let configuration be a sequence (z1, z2, ..., zM ), where zi is the number of machines unused482

in time slot [i − 1, i]. Thus, once we have chosen which special slots to open, we get the483

configuration which tells us how many machines are left unused in each time slot. In the484

remainder of this section, we give an if-and-only-if condition on whether a configuration can485

fit all jobs from S3.486

Assume the machines are numbered from 1 to p. For any given configuration, we can487

assume without loss of generality that if we have zt unused capacity at time slot [t− 1, t]488

then machines 1 through zt are unused; i.e, we always leaves smaller index machine unused.489

Let ej be the number of empty time slots at machine j. We give an if-and-only-if condition490

for the feasibility based on the ej values.491

▶ Lemma 15. Given a configuration, let ej be the machine unused slot defined above and J ′
492

be a set of q ≤ p jobs with no release time and due time constraint. Let l1 ≥ l2 ≥ ... ≥ lq493

be the lengths of the jobs in J . The configuration can fit all jobs in J ′ if and only if494 ∑
i≤j ei ≥

∑
i≤j li for all j ∈ [1, q].495

Proof. To identify each job, when we say the i-th job, we refer the job with length li.496

If part Suppose
∑

i≤j ei ≥
∑

i≤j li for all j ∈ [1, q]. Now, we prove the following497

statement by induction on k: if
∑

i≤k ei ≥
∑

i≤k li for any k, then we can fit jobs l1, l2, ..., lk498

into the first k machines. The base case is k = 1: since e1 ≥ l1, then we can fit l1 into the499

first machine. Now we prove the inductive case. Suppose we can fit the first k jobs into the500

first k machines and we want to fit the first k + 1 jobs into the first k + 1 machines. Now,501

we first try to fit the first job to the first k + 1 machines and then use our induction. We502

fit the first job in following sequence: we first use machine k + 1 and if we cannot fit all503

of the first job in it, we use the machine k and repeat this process, i,e, fit the first job by504

using machine with decreasing index. Notice that we use at most e1 time slots to fit the505

first job, thus the above process will finally fit the first job inside but use some time slot of506

machines from k + 1 to 1. Now, let e′
1, e′

2, e′
3..., e′

k+1 be the machine unused time slot after507

we fit the first job inside. We know that e′
j ≥ ej+1 for j ∈ [1, k] since a job cannot use the508

same time slot twice. Another point is if e′
j < ej , i.e, we use some time slot of machine j,509

then
∑

i>j(ei − e′
i) = ej+1. Now, notice that we have jobs l2, l3, ..., lk+1, and the new time510

slot is e′
1, e′

2, ...e′
k, if we can show

∑
i≤j e′

i ≥
∑

i≤j li+1 for all j ≤ k, then by induction, we511

can fit the second to the (k + 1)-th jobs to the first k machines. If e′
j = ej , then we can say512

e′
j′ = ej′ for all j′ ≤ j, and thus

∑
i≤j e′

i =
∑

i≤j ei ≥
∑

i≤j li ≥
∑

i≤j li+1. If e′
j < ej , we513

have l1 =
∑

i≤k(ei − e′
i) = ej+1 +

∑
i≤j(ei − e′

i), thus514

∑
i≤j+1

ei ≥
∑

i≤j+1
li = l1 +

∑
i≤j

li+1 = ej+1 +
∑
i≤j

(ei − e′
i) +

∑
i≤j

li+1

⇒
∑
i≤j

ei −
∑
i≤j

(ei − e′
i) ≥

∑
i≤j

li+1 ⇒
∑
i≤j

e′
i ≥

∑
i≤j

li+1
515

In either case, we know that the remaining jobs could be fitted into machines from 1 to516

k, thus we could fit all jobs if for all j ∈ [1, p],
∑

i≤j ej ≥
∑

i≤j lj .517

Only if part If for some j ∈ [1, q],
∑

i≤j ei <
∑

i≤j li, then the configuration is impossible518

to fit jobs l1, l2, ..., lj . Consider a time slot [t− 1, t], when we fit a job inside, we always use519
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the machine with smallest index, if we could fit l1, l2, ..., lj into the time slot, then we will520

use machines with index at most j. If at any time slot, we use a machine with index greater521

than j, then we know we already use all machines from 1 to j, however, we have only j jobs522

now. Thus, if we could fit the first j jobs into the time slot, we can use the first j machines523

to fit those jobs. However, for the first j machines, the total capacity
∑

i≤j ei is less than524

the length of all jobs, i.e,
∑

i≤j li. Therefore, it is not possible to fit the first j jobs into the525

configuration. ◀526

Now we show how to apply it to the active time instance. We will set J = S3 and527

q = d. For any interval [(i − 1)W, iW ], let e1,i, e2,i, ..., ed,i be the unused time slot for528

machine 1 to d in this interval. If we close the special time slot [(i − 1)W, (i − 1)W + 1],529

then there is no capacity left so e1,i = e2,i = ... = ed,i = 0. If we open it, then ej,i = [ui]j530

, i.e. the j-th machine will hold exactly [ui]j unused time slots in the interval. Now the531

problem becomes we want to open k special time slots such that the resulting configuration532

can fit all jobs from S3. Lemma 15 implies that it is equivalent to choosing k vectors533

from (e1,1, . . . , ed,1) = u1, ..., (e1,n, . . . , ed,n) = un such that
∑

i≤j ei ≥
∑

i≤j [v]i for every534

j ∈ [1, d], which is exactly the definition of our prefix sum cover problem. Note that the535

ordering requirement comes from the fact we have ordering requirement in Lemma 15 and536

the positiveness of u comes from the fact that the machine from 1 to d has 1 unused space at537

time slot [(i− 1)W, (i− 1)W + 1] if we open it. Since d, W are all polynomial, the interval538

length and the machine number p are also polynomial.539
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A NP Completeness of the prefix sum cover problem576

Proof. We will reduce set cover problem to the prefix sum cover problem. Recall [v]i is the577

i-th index value of vector v. Consider a set cover instance, U is the universe containing d578

elements, S contains n sets and k is the target integer, the set cover problem is to find at579

most k subsets from S such that the union of those sets is the universe U . We could use a580

vector ui ∈ Nd to represent each set of S, for each index j ∈ [1, d], if the set contains the581

j-th element, then we set the j-th value of ui to be 1. Otherwise, it will be 0. the target582

vector v = 1d. Now the set cover problem is to find at most k vectors ul1 , ul2 , ..., ulk
from583

u1, u2, ..., un such that for each j ∈ [1, d], [
∑

i≤k uli ]j ≥ [v]j . For technique problem, we will584

add 0-th index to the vector and set it to be 0 for both u and v. This won’t affect our585

solution and this index is only helps for dealing with 1-th index.586

Next, we will transform all vectors u1, u2, ..., un to new vectors u′
1, u′

2, ..., u′
n. Specifically,587

for each vector ui = ([ui]1, [ui]2, ..., [ui]d), the new vector u′
i = ([u′

i]1, [u′
i]2, ..., [u′

i]d), where588

[u′
i]j = [ui]j− [ui]j−1 +2+d−j for all j ∈ [1, d]. Notice that [ui]j is either 0 or 1, thus [u′

i]j ∈589

[1, d + 2] . Now for the target vector v, we will set the new vector v′ = ([v′]1, [v′]2, ..., [v′]d)590

such that [v′]j = [v]j − [v]j−1 + 2k + k(d − j). Again, since [v]j , [v]j−1 ∈ [0, 1], we have591

[v′]j ∈ [2k−1, kd + k + 1]. Thus, the maximum value in the new vectors is at most kd + k + 1,592

which is at most polynomial in n and fits our requirement of prefix sum cover problem.593

Last, for the ordering requirement, we have [u′
i]j − [u′

i]j−1 = [ui]j−2 − [ui]j−1 + 1 ≥ 0 and594

[v′]j − [v′]j−1 = [v]j−2 − [v]j−1 + k ≥ 0. Now we want to show the following if-and-only-if595

for the reduction.596

If part If we have a solution ul1 , ul2 , ..., ulk
for the set cover problem. If the solution597

contains less than k vectors, we could add some vectors to the solution until k vectors, this598

doesn’t change the solution, so we could assume we have k vectors in the solution. Now,599

we want to show, the new vector u′
l1

, u′
l2

, ..., u′
lk

is a solution for the partial sum problem.600

From set cover problem, we know [
∑

i≤k uli ]j ≥ [v]j , for j ∈ [0, d]. Our target is to show601 ∑
i′≤j

∑
i≤k[u′

li
]i′ ≥

∑
i′≤j [v′]i′ , for j ∈ [1, d]. Notice that602 ∑

i′≤j

∑
i≤k

[u′
li

]i′ −
∑
i′≤j

[v′]i′

=
∑
i≤k

∑
i′≤j

([uli
]i′ − [uli

]i′−1 + 2 + d− i′)−
∑
i′≤j

([v]i′ − [v]i′−1 + 2k + k(d− j))

=
∑
i≤k

([uli
]j + 2j + (2d− 1− j)j

2 )− ([v]j + 2jk + (2d− 1− j)jk

2 )

=
∑
i≤k

[uli
]j − [v]j = [

∑
i≤k

uli
]j − [v]j ≥ 0

603

Thus, the new vectors are the solution for the partial problem.604

https://doi.org/10.1145/3409964.3461795


Cao et al. 28:17

Only if If we have a solution u′
l1

, u′
l2

, ..., u′
lk

for the prefix sum cover problem. Again, if605

the solution contains less than k vectors, we add some vectors to the solution. Notice that606

all number in the vector are non-negative, thus, the new solution is still feasible. Now, based607

on the above equation, the vector ul1 , ul2 , ..., ulk
is a solution for the set cover problem.608

◀609

ISAAC 2022
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