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ABSTRACT
This brief announcement presents an algorithm for (1 + 𝜖) ap-
proximate single-source shortest paths for directed graphs with

non-negative real edge weights in the CONGEST model that runs

in �̃� ((𝑛1/2 +𝐷 + 𝑛2/5+𝑜 (1)𝐷2/5) log𝑊 /𝜖2) rounds, where𝑊 is the

ratio between the largest and smallest non-zero edge weights.
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1 INTRODUCTION
This paper presents an improved algorithm for approximate single-

source shortest paths (SSSP) in the CONGEST model. The approxi-

mate single-source shortest paths problem is as follows. Given a

directed graph𝐺 = (𝑉 , 𝐸,𝑤) with non-negative real edge weights, a
source node 𝑠 ∈ 𝑉 , and approximation parameter 𝜖 , compute (1+𝜖)
approximations of the distances from 𝑠 to all nodes in the graph.

In particular, for every node 𝑣 ∈ 𝑉 , the problem is to compute a

distance estimate
˜𝑑 (𝑠, 𝑣) satisfying 𝑑 (𝑠, 𝑣) ≤ ˜𝑑 (𝑠, 𝑣) ≤ (1 + 𝜖)𝑑 (𝑠, 𝑣),

where 𝑑 (𝑠, 𝑣) is the true shortest-path distance from 𝑠 to 𝑣 .

The CONGEST model [12] is a distributed model consisting of

an undirected communication network corresponding to an 𝑛-node

undirected graph 𝑁 = (𝑉 , 𝐿). Each node has a unique 𝑂 (log𝑛)-bit
ID. Each link (𝑢, 𝑣) ∈ 𝐿 indicates a bidirectional communication link

between nodes𝑢 and 𝑣 . Nodes communicate in synchronous rounds.

In each round, every node may send and receive a 𝐵 = Θ(log𝑛)-bit
message to and from each of its neighbors. The node may send

differentmessages to each neighbor. The complexity of an algorithm

in this model is measured by the number of rounds; the cost of local
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computation is ignored. Typical bounds depend on 𝑛 and 𝐷 , where

𝐷 is the unweighted diameter of the undirected network 𝑁 .

For graph problems in the CONGESTmodel, the network𝑁 is the

same as the graph𝐺 except that in𝐺 the edges are directed, and in𝑁

the edges are undirected. For approximate SSSP in CONGEST, each

node 𝑣 must learn its distance estimate
˜𝑑 (𝑠, 𝑣), but these distances

need not be communicated back to 𝑠 . To start, each node knows

its set of incoming and outgoing edges and their weights, as well

as whether it is the source node. Since every node can learn 𝑛 in

𝑂 (𝐷) rounds, we assume all nodes already know 𝑛.

Our algorithm follows the framework from Forster andNanongkai

[8] for distributed shortest paths. One of the steps in their frame-

work involves computing shortest paths to a carefully selected

subset of the vertices by simulating a parallel algorithm for SSSP

in CONGEST. We achieve our improved bound by replacing the

algorithm used in this step, instead adapting the parallel algorithm

of Cao et al. (CFR) [2, 3] to the CONGEST model.

1.1 Related Work
Peleg and Rubinovich [13] showed that Ω̃(

√
𝑛 + 𝐷) is required

for SSSP in the CONGEST model, where Ω̃ hides polylogarithmic

factors. The Bellman Ford algorithm for SSSP [5] can be used in

the CONGEST model, and runs in𝑂 (𝑛) rounds. This result was the
fastest known algorithm for a long time until Elkin [6] provided a

randomized algorithm that runs in �̃� (𝑛5/6) rounds for 𝐷 = �̃� (
√
𝑛)

and �̃� (𝐷1/3𝑛2/3) rounds for larger 𝐷 .
For undirected graphs, the approximate version of the problem

has been well studied. The state-of-the-art is a deterministic algo-

rithm from Becker et al. [1] which computes (1 + 𝜖)-approximate

shortest paths in �̃� (
√
𝑛 + 𝐷) rounds.

For directed graphs in the CONGEST model, recent progress has

been made on the exact version of the problem. Ghaffari and Li [10]

presented two randomized algorithms for graphs with polynomi-

ally bounded integer edge weights that run in �̃� (𝐷1/4𝑛3/4) rounds
and �̃� (𝑛3/4+𝑜 (1) +𝑚𝑖𝑛{𝑛3/4𝐷1/6, 𝑛6/7} + 𝐷) rounds. At the same

time, Forster and Nonongkai (FN) [8] provided two randomized

algorithms for graphs with polynomially bounded integer edge

weights that run in �̃� (
√
𝑛𝐷) rounds and �̃� (𝑛1/2𝐷1/4 + 𝑛3/5 + 𝐷)

rounds. Chechik and Mukhtar [4] showed a randomized algorithm

that achieves �̃� (
√
𝑛𝐷1/4

log
2 (𝑊 ) + 𝐷) rounds. For approximate

shortest paths, FN [8] show a randomized algorithm that runs in

�̃� ((𝑛1/2𝐷1/4 + 𝐷) log𝑊 /𝜖) rounds.

1.2 Our results and technique
Our main result in this brief announcement is captured by the

following theorem.
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Theorem 1. In the CONGEST model, there exists a randomized
algorithm that solves (1+𝜖)-approximate single-source shortest-paths
problem for directed 𝑛-node graph𝐺 with non-negative real weights,
in �̃� ((

√
𝑛 + 𝐷 + 𝐷2/5𝑛2/5+𝑜 (1) ) log𝑊 /𝜖2) rounds, with high prob-

ability, where 𝐷 is the undirected diameter of 𝐺 and𝑊 is the ratio
between heaviest and non-zero lightest edge weight.

Across much of the range of network diameters, our algorithm’s

round complexity beats previous algorithms by a polynomial factor

(albeit a very small one). Note that we only solve the approximate

version of the problem, whereas some of the prior art solves that

exact version. For polynomial bounded𝑊 , when the diameter is

𝑜 (𝑛1/4), our algorithm only takes �̃� (
√
𝑛) rounds, which matches

the lower bound.When the diameter of the network𝐷 is𝑂 (
√
𝑛), the

best previous result was �̃� (𝑛5/8) rounds [8], whereas our algorithm
completes in �̃� (𝑛3/5+𝑜 (1) ) rounds.

2 PRELIMINARIES
For a graph 𝐺 = (𝑉 , 𝐸,𝑤), 𝑉 is the set of vertices, 𝐸 is the set of

edges, and𝑤 : 𝐸 → 𝑅 is a weight function. We consider graphs with

non-negative real weighted edges and we assume the lightest non-

zero edge weight is 1 and the heaviest edge weight is𝑊 . Otherwise,

we can normalize all edge weights. The number of nodes is 𝑛 = |𝑉 |.
For a subset 𝑉 ′ ⊂ 𝑉 , we denote the induced graph on 𝑉 ′ as 𝐺 [𝑉 ′].

For a pair of nodes 𝑢, 𝑣 ∈ 𝑉 , the shortest path distance in𝐺 from

𝑢 to 𝑣 is denoted 𝑑𝐺 (𝑢, 𝑣). The ℎ-hop shortest path distance from

𝑢 to 𝑣 in 𝐺 is the shortest path from 𝑢 to 𝑣 that contains at most ℎ

edges and is denoted 𝑑
(ℎ)
𝐺
(𝑢, 𝑣). We omit the subscripts in 𝑑𝐺 (𝑢, 𝑣)

and 𝑑
(ℎ)
𝐺
(𝑢, 𝑣) when 𝐺 is clear from the context.

Distance 𝑑 related node sets. For a directed graph 𝐺 = (𝑉 , 𝐸)
and vertices 𝑢, 𝑣 ∈ 𝑉 , denote 𝑅+

𝑑
(𝐺, 𝑣) = {𝑢 |𝑑𝐺 (𝑣,𝑢) ≤ 𝑑} and

𝑅−
𝑑
(𝐺, 𝑣) = {𝑢 |𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑} to be the set of nodes which can be

reached by 𝑣 within distance 𝑑 , and can reach 𝑣 within 𝑑-distance,

respectively.

The following lemma is a standard result for distributed compu-

tation in the CONGEST model.

Lemma 2. [12] Suppose each 𝑣 ∈ 𝑉 holds 𝑘𝑣 ≥ 0 messages of
𝑂 (log𝑛) bits each, for a total of 𝐾 =

∑
𝑣∈𝑉 𝑘𝑣 . Then all nodes in the

network can receive these 𝐾 messages within 𝑂 (𝐾 + 𝐷) rounds.

3 ALGORITHM
Next we present an overview of the algorithm, which extends the

FN [8] framework. The algorithm is parameterized by 𝛼 , to be set

later. Steps 1, 3 and 5 are the same as FN [8], and step 2 is simi-

lar. In step 2, FN computes distance estimates from each skeleton

node to each node in the original graph. Our step 2 does the same

computation and additionally computes the distance from each

node in the original graph to each skeleton node. The additional

distances estimates are used in the computation of step 4. The main

difference in the algorithm is step 4. Both algorithms solve SSSP

on the skeleton graph, however we use a different algorithm to

compute SSSP. The algorithm for computing step 4 is discussed in

the next section.

(1) Select each node 𝑣 ∈ 𝑉 to be in the set of skeleton nodes 𝑆

with probability �̃� (𝛼/𝑛). Add the source 𝑠 to 𝑆 . If |𝑆 | > Ω̃(𝛼),
abort the algorithm.

(2) Let 𝑔 = �̃� (𝑛/𝛼). For a pair of nodes 𝑢, 𝑣 , define a (1 +𝑂 (𝜖))-
approximate 𝑔-hop distance estimate

˜𝑑 (𝑢, 𝑣) to be an es-

timate of 𝑑
(𝑔)
𝐺
(𝑢, 𝑣) such that 𝑑

(𝑔)
𝐺
(𝑢, 𝑣) ≤ ˜𝑑 (𝑢, 𝑣) ≤ (1 +

𝑂 (𝜖))𝑑 (𝑔)
𝐺
(𝑢, 𝑣). For each 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 , both 𝑢 and 𝑣 learn

˜𝑑 (𝑢, 𝑣).
(3) Construct the skeleton graph 𝐺𝑆 = (𝑆, 𝐸𝑆 ,𝑤𝑠 ), where 𝐸𝑆 =

𝑆𝑥𝑆 , and𝑤𝑠 (𝑢, 𝑣) = ˜𝑑 (𝑢, 𝑣). For nodes 𝑢, 𝑣 ∈ 𝑆 , both 𝑢 and 𝑣

know𝑤𝑠 (𝑢, 𝑣).
(4) Solve approximate SSSP on the skeleton graph 𝐺𝑆 with 𝑠

as the source, i.e. for each 𝑣 ∈ 𝑆 , compute 𝑑 ′(𝑠, 𝑣), where
𝑑𝐺𝑆
(𝑠, 𝑣) ≤ 𝑑 ′(𝑠, 𝑣) ≤ (1 +𝑂 (𝜖))𝑑𝐺𝑆

(𝑠, 𝑣).
(5) For each 𝑣 ∈ 𝑉 , compute

ˆ𝑑 (𝑠, 𝑣) = min𝑢∈𝑆 (𝑑 ′(𝑠,𝑢) + ˜𝑑 (𝑢, 𝑣)).
In steps 2 and 3 of the algorithm, we require that both nodes

𝑢 and 𝑣 know the distance estimate
˜𝑑 (𝑢, 𝑣). FN does not have this

requirement. Also, the distance estimates computed in step 2 should

be consistent, meaning that the distance estimate
˜𝑑 (𝑢, 𝑣) that 𝑢

knows should be equal to the distance estimate
˜𝑑 (𝑢, 𝑣) that 𝑣 knows.

The correctness of the algorithm follows from FN [8].

Theorem 3. For any directed input graph𝐺 = (𝑉 , 𝐸,𝑤) with fixed
source node 𝑠 , the algorithm above consisting of Steps 1–5 computes,
for every node 𝑣 ∈ 𝑉 , a distance estimate ˆ𝑑 (𝑠, 𝑣) such that 𝑑𝐺 (𝑠, 𝑣) ≤
ˆ𝑑 (𝑠, 𝑣) ≤ (1 +𝑂 (𝜖))𝑑𝐺 (𝑠, 𝑣).

3.1 Step 4
Steps 1, 3 and 5 are the same as FN [8]. In Step 2, FN computes

distance estimates from each skeleton node to each node in the

original graph. Our step 2 does the same computation and addition-

ally computes the distance from each node in the original graph to

each skeleton node. The additional distances estimates are used in

the computation of step 4.

The main difference in our algorithm is step 4. Both algorithms

solve SSSP on the skeleton graph, however we use a different tech-

nique from FN. We adapt an algorithm from CFR [2] for parallel

approximate shortest paths to solve approximate SSSP on the skele-

ton graph. Their algorithm constructs a (𝛽 = 𝑛1/2+𝑜 (1) , 𝜖)-hopset,
and then solves parallel approximate shortest paths on the graph

with the hopset edges added. For a directed graph 𝐺 = (𝑉 , 𝐸), a
(𝛽, 𝜖)-hopset is a set of weighted edges 𝐸 ′ such that, for each pair

of nodes 𝑢, 𝑣 ∈ 𝑉 , there exists a path 𝑝 from 𝑢 to 𝑣 that contains

at most 𝛽 edges and 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐺′ (𝑝) ≤ (1 + 𝜖)𝑑𝐺 (𝑢, 𝑣), where
𝐺 ′ = (𝑉 , 𝐸 ∪ 𝐸 ′). For step 4, we construct a (𝛽, 𝜖)-hopset using the

CFR algorithm, then run BFS on the skeleton graph with the hopset

edges added to the graph to solve approximate SSSP. Next we will

describe computing shortest paths on the limited-depth skeleton

graph. Then we will give an overview of the CFR algorithm, and

discuss how to make it work in the CONGEST model. In the full

version of the paper, we give more details of the CFR algorithm in

the CONGEST model.

One of the difficulties in computing SSSP on the skeleton graph

is that an edge (𝑢, 𝑣) ∈ 𝐺𝑆 may not be an edge in the original

graph and thus not have a direct communication link. We will



require that each node in the skeleton graph knows its incoming

and outgoing edges. Once we have a limited depth skeleton graph,

we can simulate BFS as follows.

Lemma 4. Given a graph 𝐺 = (𝑉 , 𝐸) with diameter 𝐷 , and a
skeleton graph𝐺𝑇 over a subset of nodes 𝑇 ⊂ 𝑉 with integer weights,
for a source node 𝑠 ∈ 𝑇 , there is an algorithm such that each node
𝑣 ∈ 𝑅+

ℎ
(𝐺𝑇 , 𝑠), including 𝑠 itself, learns the distance 𝑑𝐺𝑇

(𝑠, 𝑣) in
𝑂 (𝐷ℎ + |𝑅+

ℎ
(𝐺𝑇 , 𝑠) |) rounds and 𝑂 ( |𝑅+ℎ (𝐺𝑇 , 𝑠) |) congestion on each

edge.

Proof. We simulate BFS on the skeleton graph. The algorithm

is divided into levels, and at each level 𝑖 , the goal is for nodes

at distance 𝑖 to learn their distance from 𝑠 . To start, each node

𝑣 ∈ 𝑇 \{𝑠} sets 𝑑 (𝑠, 𝑣) = ∞, and 𝑠 sets 𝑑 (𝑠, 𝑠) = 0. At level 𝑖 ∈ [0, ℎ],
if a node 𝑣 learns its distance 𝑑 (𝑠, 𝑣) = 𝑖 , it will broadcast 𝑑 (𝑠, 𝑣) =
𝑖 to the whole graph. By Lemma 2, each level takes 𝑂 (𝐷 + 𝐾𝑖 )
time where 𝐾𝑖 = |𝑅+

𝑖
(𝐺𝑇 , 𝑠)\𝑅+𝑖−1 (𝐺𝑇 , 𝑠) |. Thus, each node 𝑣 can

learn its distance in 𝑂 (𝐷ℎ + |𝑅+
ℎ
(𝐺𝑇 , 𝑠) |) rounds. After ℎ levels, all

nodes whose distance have been updated broadcast their distances

and 𝑠 learns the distance updates. This broadcast can be done in

𝑂 (𝐷 + |𝑅+
ℎ
(𝐺𝑇 , 𝑠) |) rounds. The total amount of information sent is

𝑂 ( |𝑅+
ℎ
(𝐺𝑇 , 𝑠) |), and thus the algorithm takes 𝑂 (𝐷ℎ + |𝑅+

ℎ
(𝐺𝑇 , 𝑠) |)

rounds and 𝑂 ( |𝑅+
ℎ
(𝐺𝑇 , 𝑠) |) congestion on each edge. □

Overview of CFR Algorithms. [2, 3]. The algorithms from CFR are

based on two prior algorithms for parallel reachability by Fineman

[7] and Jambulapati et al. (JLS) [11]. Their first algorithm is for

constructing a (𝛽 = 𝑛1/2+𝑜 (1) , 𝜖)-hopset with �̃� (𝑛) edges in �̃� (𝑚)
work [2]. They also give a parallel algorithm constructing the hopset

and use it to solve parallel approximate shortest paths on the graph

with the hopset edges added. In a follow-up paper, they extend this

result to construct a (𝛽 = �̃� (𝑛1/2+𝑜 (1)/𝜌 , 𝜖)-hopset of size �̃� (𝑛𝜌2)
in �̃� (𝑚𝜌2𝑛𝜌4) work and �̃� (𝑛1/2+𝑜 (1)/𝜌) span, where 𝜌 ∈ [1,

√
𝑛] is

a tradeoff parameter [3]. Next we give an overview of their hopset

algorithm [2]. The work span tradeoff algorithm [3] works similarly.

The CFR algorithm for constructing hopset runs as follows. The

algorithm is parameterized by a distance guess 𝐷 , and shortcuts all

paths of this distance. It then repeats for all guesses of the distance.

At each level of recursion the algorithm chooses some nodes to be

pivots and some to be shortcutters, where the pivots are a subset

of the shortcutters. Each shortcutter 𝑥 computes the set 𝑅+
𝑑
(𝐺, 𝑥)

and adds edges from 𝑥 to each node 𝑣 ∈ 𝑅+
𝑑
(𝐺, 𝑥) with weight

equal to the distance from 𝑥 to 𝑣 to the hopset. Symmetrically, each

shortcutter 𝑥 computes the set 𝑅−
𝑑
(𝐺, 𝑥) and adds edges from each

node 𝑣 ∈ 𝑅+
𝑑
(𝐺, 𝑥) to 𝑥 with weight equal to the distance from 𝑣 to

𝑥 to the hopset. Next each pivot𝑤 adds the label𝑤𝐴𝑛𝑐 to each node

in 𝑅+
𝑑
(𝐺,𝑤), the label 𝑤𝐷𝑒𝑠𝑐 to each node in 𝑅−

𝑑
(𝐺,𝑤), and an 𝑋

label to any node in 𝑅+
𝑑
(𝐺,𝑤) ∩ 𝑅−

𝑑
(𝐺,𝑤). The graph is partitioned

in to subgraphs such that two nodes are in the same subgraph if

and only if they have the exact same set of labels, and any subgraph

that contains an 𝑋 label is removed from the graph. Each subgraph

is recursed on with a decreased search distance. Finally the entire

algorithm is repeated for each possible guess of the distance.

Adapting CFR to the CONGEST model. The CFR algorithm fol-

lows a similar structure to the one of the JLS algorithm [11] for

parallel single-source reachability. JLS extends their algorithm to

the CONGEST model. We use their techniques to adapt CFR to the

CONGEST model. Next we will give an overview of the CONGEST

JLS algorithm, and then discuss CFR in the CONGEST model.

The JLS algorithm for reachability in the CONGESTmodel builds

a skeleton graph and then essentially simulates their parallel algo-

rithm, which adds extra edges to the graph in order to reduce the

diameter. The simulate their parallel algorithm by each node broad-

casting the information from its computation, such as when the

node is reached in BFS searches, the subproblem labels and IDs, the

new shortcut edges, and when it becomes a shortcutter. There are

two important parameters for the CONGEST JLS algorithm. First,

each BFS takes𝑂 (𝐷ℎ+∑𝑠 |𝑅+ℎ (𝐺, 𝑠) |) rounds on the skeleton graph,

so the depth ℎ of the BFS must be limited. Second, the total number

of new edges added to the graph is

∑
𝑠 |𝑅+ℎ (𝐺, 𝑠) |. They balance

these parameters and get �̃� (𝐷𝛼1/2+𝑜 (1) ) and �̃� (𝛼), which are the

costs of BFS and broadcasting all the new edges, respectively. After

simulating their parallel algorithm on the skeleton graph, they sim-

ulate BFS on the skeleton graph and locally compute reachability

for each node. Their algorithm runs in 𝐷2/3𝑛1/3+𝑜 (1) rounds.
We use the same simulation technique as JLS to adapt CFR to

the CONGEST model. The total cost of step 4 is �̃� ( 𝛼𝜌
2

𝜖2
log𝑊 +

𝐷𝛼1/2+𝑜 (1)
𝜌𝜖 log𝑊 ). The details of the algorithm and the running

time are deferred to the full version of the paper. For 𝐷 = 𝑂 (𝑛1/4),
the CFR [2] algorithm can be used to achieve the desired bound.

For 𝐷 = 𝜔 (𝑛1/4), we use the CFR algorithm that has a work span

tradeoff [3]. Section 3.2 gives the specific parameter settings.

3.2 Cost of the Algorithm
Steps 1-3 and 5 can be performed the same as FN [8]. The complexity

of the algorithm is as follows. Step 1 takes �̃� (𝛼 + 𝐷) rounds to
broadcast 𝑆 to all nodes. In step 2, computing the distance estimates

can be done in �̃� (𝛼 +𝑛 log𝑊 /(𝛼𝜖) +𝐷) rounds. FN only computes

forwards distance estimates, but the backwards distance estimates

can be computed symmetrically. Step 3 computes the skeleton graph

and broadcasts it to the graph, which can be done in �̃� (𝛼 + 𝐷)
rounds. In the full version of the paper we show that step 4 can be

implemented in �̃� ( 𝛼𝜌
2

𝜖2
log𝑊 + 𝐷𝛼1/2+𝑜 (1)

𝜌𝜖 log𝑊 ) rounds, where 𝜌
is a parameter which is in range [�̃� (1), 𝛼1/2+𝑜 (1) ]. Finally step 5 is

computed internally for each node.

The total number of rounds for the algorithm is �̃� (𝐷+ 𝑛
𝛼𝜖 log𝑊 +

𝛼𝜌2
log𝑊

𝜖2
+ 𝐷𝛼1/2+𝑜 (1)

log𝑊
𝜌𝜖 ), which reduces to as follows:

Case 1. If 𝐷 = 𝑜 (𝑛1/4), set 𝜌 = Θ̃(1) and 𝛼 = Θ̃(
√
𝑛). The whole

algorithm takes �̃� (
√
𝑛 log𝑊 /𝜖2) rounds.

Case 2. If 𝐷 = 𝜔 (𝑛2/3), set 𝜌 = 𝛼1/2+𝑜 (1) and 𝛼 = �̃� (𝑛1/3). The
whole algorithm takes �̃� (𝐷 log𝑊 /𝜖2) rounds.

Case 3. Otherwise, set 𝜌 = �̃� ( 𝐷2/5

𝑛1/10−𝑜 (1) ) and 𝛼 = �̃� ( 𝑛3/5+𝑜 (1)

𝐷2/5 ).
The whole algorithm takes �̃� (𝐷2/5𝑛2/5+𝑜 (1) log𝑊 /𝜖2) rounds.

Combining all three cases together, the algorithm solves approx-

imate SSSP in �̃� (
√
𝑛 + 𝐷 + 𝐷2/5𝑛2/5+𝑜 (1) ) log𝑊 /𝜖2) rounds. This

shows the running time of Theorem 1.
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APPENDIX
The hopsets algorithm is given in Algorithm 1. This algorithm is

essentially a simulation of the CFR parallel hopsets algorithm [2].

The input of the algorithm is a skeleton graph, and the output of

the algorithm is the skeleton graph with a (𝛽 ′, 𝜖)-hopset added to

the graph. The parameters 𝛿 = 𝑂 (𝜖), 𝑘 = Θ(log𝑛), 𝜆 = Θ(1), 𝑐 =

𝑂 (log𝑘 (1/𝜖)) are set the same as CFR [2] and the parameter 𝐿 can

be set to any integer greater than 17 − log𝑘 𝜖 . Choosing a larger 𝐿
results in a smaller hopbound but larger size hopset. The correctness

of the algorithm follows directly from CFR [2], but we will show

the running time of the algorithm. The remainder of this section

will show the following theorem.

Theorem 5. Given a graph 𝐺 = (𝑉 , 𝐸) with diameter 𝐷 , and a
𝑛-node skeleton graph 𝐺𝑇 over a subset of nodes 𝑇 ⊂ 𝑉 , for a source
node 𝑠 ∈ 𝑇 , Algorithm 1 takes �̃� (𝐷𝑛1/2+𝑜 (1/log𝑘) log𝑊 /(𝑘𝐿/2𝜖) +
𝑛𝑘𝐿+1 log𝑊 /𝜖2) rounds w.h.p. in the CONGEST model.

By setting 𝑘 = 𝑂 (log𝑛) and 𝜌 = 𝑘𝐿/2, for a 𝛼-node graph, the

bound from Theorem 5 is �̃� (𝐷𝛼1/2+𝑜 (1) log𝑊 /(𝜌𝜖) + 𝛼𝜌2
log𝑊

𝜖2
),

which is the bound that we use in Section 3.2. To prove Theorem 5,

we will use the following Lemma which is a standard result in the

CONGEST model.

Lemma 6. [9] Consider 𝑘 distributed algorithms 𝐴1, ..., 𝐴𝑘 . Let
dilation be such that each algorithm 𝐴𝑖 finishes in dilation rounds
if it runs individually. Let congestion be such that there are at most
congestion messages, each of size 𝑂 (log𝑛), sent through each edge
(counted over all rounds), when we run all algorithms together. There
is a distributed algorithm that can execute𝐴1, ..., 𝐴𝑘 in �̃� (dilation+
congestion)rounds in the CONGEST model.

Algorithm 1 first sets up the hopset 𝐻 and the hopbound 𝛽 ′. It
repeats Lines 4-36 𝜆 log2 𝑛 times. Line 4 starts a loop that attempts to

shortcut paths 𝑃 containing 𝛽 ′ to 2𝛽 ′ edges, where𝑤 (𝑃) ∈ [2𝑖 , 2𝑖+1).
Next, in Lines 6-7, the algorithm rounds each edge up. After this

step, a path 𝑃 will contain only integer weighted edges and the

new length of 𝑃 is �̂� (𝑃) which is at most 𝑂 (𝛽 ′). Thus, when the

algorithm later does BFS, the depth 𝛽 ′ can be bounded.

Next the algorithm starts adding edges to the hopset. Lines 9-10

gives each node a label 𝑙 (𝑣) and from Line 11 to 13, each node

will do BFS with depth �̃� (𝛽 ′/𝛿). Recall that Lemma 4, shows how

to run single-source BFS. By combining Lemma 4 with Lemma

6, the algorithm can run BFS from multiple sources. Using these

two Lemmas, the number of rounds for Lines 11-13 is �̃� (𝐷ℎ +∑
𝑣,ℓ (𝑣) ≤𝑙 |𝑅+ℎ (𝐺, 𝑠) ∪ 𝑅

−
ℎ
(𝐺, 𝑠) |, where ℎ = 8(1 + 𝜖)𝛽 ′/𝛿 = 𝑂 (𝛽 ′/𝜖).

Since each node reached in a BFS adds an edge to the hopset, bound-

ing the size of the hopset gives a bound on the number of nodes

reached in all the searches. Fortunately, CFR [2] gives following

theorem on the size of the hopset, which gives an upper bound on

the congestion of

∑
𝑣,ℓ (𝑣) ≤𝑙 |𝑅+ℎ (𝐺, 𝑠) ∪ 𝑅

−
ℎ
(𝐺, 𝑠) | = �̃� (𝑛𝑘𝐿+1/𝜖2).

Theorem 7. [2] One execution of Line 5-34 DHopset(𝐺 = (𝑉 , 𝐸))
with parameter𝑘 , where𝑛 = |𝑉 |,𝑚 = |𝐸 |, produces a (𝑛1/2+𝑂 (1/log𝑘)/𝑘𝐿/2, 𝜖)-
hopset of size �̃� (𝑛𝑘𝐿+1/𝜖2) with high probability.

Next, in Lines 14-34, the algorithm divides the graph into smaller

graphs and adds edges on the smaller skeleton graphs. CFR im-

plements Lines 14-34 recursively, while Algorithm 1 is iterative,

which is done for clarity. At the start of the algorithm, there is

only one skeleton graph 𝐺 . Then in each iteration, the algorithm

runs Lines 18-34 on each skeleton graph. Lines 18-20 are the same

as Lines 11-13, except for different nodes. Since the congestion is

already bounded, the upper bound of the running time is the same.

Lines 21-34 try to construct smaller skeleton graphs. For each pivot,

i.e. nodes 𝑣 where ℓ (𝑣) = 𝑟 , the algorithm first chooses a "good"

distance, where "good" is defined in Line 25. In Line 25, each pivot

runs BFS to depth 𝜌𝑚𝑎𝑥𝐷𝑟 . Again, we can use the analysis from

CFR to bound the congestion.

Lemma 8. [2] Consider an execution of Line 5-34 DHopset(𝐺 =

(𝑉 , 𝐸)). W.h.p. at least 1 − 𝑛−0.7𝜆+3, the following holds for all 𝑣 ∈ �̃� ,
|𝑅+𝜌𝑚𝑎𝑥𝐷𝑟

(�̃�, 𝑣) | ≤ 𝑛𝑘−𝑟 , |𝑅−𝜌𝑚𝑎𝑥𝐷𝑟
(�̃�, 𝑣) | ≤ 𝑛𝑘−𝑟 .

Lemma 8 implies that for each 𝑟 , and each �̃� , the congestion for

each 𝑣 in Lines 19-20 is at most 𝑂 (𝑛𝑘−𝑟 ). Then we can count the

number of nodes in all skeleton graphs �̃� that run BFS. If we knew

the total number of nodes for each 𝑟 , we could count the number of

nodes with label ℓ (𝑣) = 𝑟 , since the probability of each node being

label ℓ (𝑣) = 𝑟 is �̃� (𝑘𝑟 /𝑛). The difficulty of counting the nodes in



Algorithm 1 Distributed hopset algorithm for weighted directed skeleton graphs. 𝛿, 𝑘, 𝜆, 𝑐, 𝐿 are parameters.

1: function DHopset(𝐺 = (𝑉 , 𝐸))
2: 𝐻 ← ∅, 𝛽 ′ ← 𝛽/(𝜆2𝑘) (𝐿−17+log𝑘 𝜖)/2
3: repeat 𝜆 log2 𝑛 times

4: for each 𝑖 ∈ [−2, log(𝑛2𝑊 )]
5: �̂� = 𝛿 · 2𝑖−1/𝛽, �̂� ′ ← ∅, 𝐷 = 4(1 + 𝛿)𝛽 ′/(𝛿𝑘𝑐 )
6: for each 𝑣 ∈ 𝑉 , 𝑒 = (𝑢, 𝑣) or (𝑣,𝑢) ∈ 𝐸 ⊲ Construct a new skeleton graph 𝐺 = (𝑉 = 𝑉 , 𝐸 = 𝐸)

7: �̃� (𝑒) =


+∞ if𝑤 (𝑒) ≥ 2

𝑖+1⌈
𝑤 (𝑒)
�̂�

⌉
if𝑤 (𝑒) < 2

𝑖+1

1 if𝑤 (𝑒) = 0

8: for each 𝑣 ∈ 𝑉
9: for each 𝑖 ′ ∈ [0, log𝑘 𝑛]
10: With probability (𝜆𝑘𝑖′+1 log𝑛)/𝑛, set ℓ (𝑣) to 𝑖 ′, break if setting successfully.

11: if ℓ (𝑣) ≤ 𝐿 then ⊲ Run multiple source BFS on 𝐺

12: for each 𝑢 ∈ 𝑅+
8(1+𝛿)𝛽′/𝛿 (𝐺, 𝑣) add edge (𝑣,𝑢) to �̂� ′ with weight d

�̂�
(𝑣,𝑢)

13: for each 𝑢 ∈ 𝑅−
8(1+𝛿)𝛽′/𝛿 (𝐺, 𝑣) add edge (𝑢, 𝑣) to �̂� ′ with weight d

�̂�
(𝑢, 𝑣)

14: 𝑆0 = {𝐺}
15: for each 𝑟 ∈ [0, log𝑘 𝑛]
16: 𝑆𝑟+1 = ∅, 𝐷𝑟 ← 𝐷/(𝜆𝑟𝑘𝑟/2)
17: for each �̃� = (�̃� , 𝐸) ∈ 𝑆𝑟
18: for each 𝑣 ∈ 𝑉 with ℓ (𝑣) = 𝑟 + 𝐿 ⊲ Run multiple source BFS on all �̃�

19: for each 𝑢 ∈ 𝑅+
32𝜆2𝑘2𝐷𝑟 log

2 𝑛
(�̃�, 𝑣) add edge (𝑣,𝑢) to 𝐻 ′ with weight dist

�̃�
(𝑣,𝑢)

20: for each 𝑢 ∈ 𝑅−
32𝜆2𝑘2𝐷𝑟 log

2 𝑛
(𝐺, 𝑣) add edge (𝑢, 𝑣) to 𝐻 ′ with weight dist

�̃�
(𝑢, 𝑣)

21: for each 𝑣 ∈ �̃� with ℓ (𝑣) = 𝑟 ⊲ Construct next level skeleton graphs

22: Choose 𝜎𝑣 uniformly at random from [1, 4𝜆2𝑘 log2 𝑛], set 𝜌𝑚𝑎𝑥 = 20𝜆2𝑘2 log2 𝑛

23: for each 𝑢 ∈ 𝑅+
𝜌𝑚𝑎𝑥𝐷𝑟

(�̃�, 𝑣) , add edge (𝑣,𝑢) with weight dist
�̃�
(𝑣,𝑢)

24: for each 𝑢 ∈ 𝑅−
𝜌𝑚𝑎𝑥𝐷𝑟

(�̃�, 𝑣) , add edge (𝑣,𝑢) with weight dist
�̃�
(𝑢, 𝑣)

25: Minimize |𝑅 (𝜌𝑣+1)𝐷𝑟
(�̃�, 𝑣)\𝑅 (𝜌𝑣−1)𝐷𝑟

(�̃�, 𝑣) | such that 𝜌𝑣 ∈ [16𝜆2𝑘2 log2 𝑛 + 4𝑘 (𝜎𝑣 − 1), 16𝜆2𝑘2 log2 𝑛 + 4𝑘𝜎𝑣)
26: for each 𝑢 ∈ 𝑅+

𝜌𝑣𝐷𝑟
(�̃�, 𝑣) add label 𝑣𝐷𝑒𝑠

to vertex 𝑢

27: for each 𝑢 ∈ 𝑅−
𝜌𝑣𝐷𝑟
(�̃�, 𝑣) add label 𝑣𝐴𝑛𝑐 to vertex 𝑢

28: for each 𝑢 ∈ 𝑅+
𝜌𝑣𝐷𝑟
(�̃�, 𝑣) ∩ 𝑅−

𝜌𝑣𝐷𝑟
(�̃�, 𝑣) add label 𝑋 to vertex 𝑢

29: 𝑉
fringe
𝑣 ← 𝑅 (𝜌𝑣+1)𝐷𝑟

(�̃�, 𝑣)\𝑅 (𝜌𝑣−1)𝐷𝑟
(�̃�, 𝑣)

30: 𝑆𝑟+1 = 𝑆𝑟+1 ∪ {�̃� [𝑉 fringe
𝑣 ]} ⊲ If 𝑢 in 𝑣 ’s fringe node, mark it

31: for each 𝑢 ∈ 𝑉 that has a 𝑋 label, remove 𝑢

32: 𝑉1,𝑉2, ...,𝑉𝑡 ← partition based on labels

33: for each 𝑖 ∈ [1, 𝑡]
34: 𝑆𝑟+1 = 𝑆𝑟+1 ∪ {�̃� [𝑉𝑖 ]} ⊲ if 𝑢 is in �̃� [𝑉𝑖 ], mark it

35: 𝐻 ← 𝐻 ∪ (�̂� · �̂� ′)
36: 𝐸 ← 𝐸 ∪ 𝐻
37: return 𝐻

this way comes from the overlapping skeleton graphs, and thus

the total number of nodes in all �̃� ∈ 𝑆𝑟 could be quite large. In the

following Lemma, CFR [2] gives an upper bound of nodes in all

�̃� ∈ 𝑆𝑟 for each 𝑟 .

Lemma 9. [2] Consider an execution of Line 15-34 DHopset(𝐺 =

(𝑉 , 𝐸)). For all 𝑟 ∈ [0, log𝑘 𝑛], the number of nodes in all �̃� ∈ 𝑆𝑟 is
�̃� (𝑛) with high probability.

Thus, the congestion for all pivots in Lines 19-20 is �̃� (𝑛). This
implies that multiple source BFS performed by all the pivots runs in

�̃� (𝐷ℎ + 𝑛) rounds. After 𝜌𝑣 is decided and broadcast to each node

𝑢, node 𝑢 adds appropriate label 𝑣𝐷𝑒𝑠
, 𝑣𝐴𝑛𝑐 , or 𝑋 to itself. Lines

29-30 construct the fringe skeleton graph and Lines 33-34 partition

the graph into smaller graphs. One last complication is that when

the algorithm runs on the smaller skeleton graphs, the graphs may



overlap with one another. The algorithm must distinguish different

skeleton graph searches. The algorithm can overcome this issue

by adding marks to each smaller skeleton graph. Also, if a node is

in a fringe problem, it marks itself fringe and marks which fringe

problem it is in. Likewise for the core problem, a node marks itself

core and marks which labels it gets. When then algorithm runs BFS,

each node must append its marks to the messages it sends out. CFR

[2] has the following bound on the size of the marks for each 𝑟 ,

Lemma 10. Consider an execution of Line 5-34 DHopset(𝐺 =

(𝑉 , 𝐸)). For all 𝑣 ∈ �̃� , 𝑟 ∈ [0, log𝑘 𝑛], w.h.p., the number of pivots
ℓ (𝑢) = 𝑟 , such that 𝑣 ∈ 𝑅 (𝜌𝑢+1)𝐷𝑟

(�̃�,𝑢) is 𝑂 (𝑘) .

Thus, the overhead for marks at each level is 𝑂 (𝑘) and �̃� (𝑘) for
all 𝑟 . Lines 35 and 36 add the hopset edges to the original graph 𝐺 .

This can be done easily since each node knows the incoming and

outgoing edges of the hopset from running BFS.

By combining all these steps together, Lines 5-34 take �̃� (𝐷𝑛1/2+𝑂 (1/log𝑘)/(𝑘𝐿/2𝜖)+
𝑛𝑘𝐿+1/𝜖2) rounds. There is an additional log𝑊 factor from guess-

ing the weight of the path up to 𝑛2𝑊 . This gives the running time

in Theorem 5.

Once the (𝛽 ′, 𝜖)-hopset is constructed and the hopset edges

are added to the skeleton graph, we can solve approximate SSSP

on the new skeleton graph. By guessing the SSSP distance and

rounding up the weight of each edge, we can again do BFS on the

skeleton graph with depth 𝑂 (𝛽 ′/𝜖). Recall there will be at most

𝑛 nodes related to 𝑠 in the skeleton graph. Therefore, BFS will

take �̃� (𝐷𝑛1/2+𝑂 (1/log𝑘) log𝑊 /(𝑘𝐿/2𝜖) + 𝑛 log𝑊 ) rounds. This is
at most the running time of Algorithm 1, which implies Theorem 5

gives up an upper bound for the running time of step 4.
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