Nearly Optimal Parallel Longest Increasing Subsequence

Nairen Cao, Shang-En Huang, Hsin-Hao Su

$$
\text { SPAA } 2023
$$

Longest increasing subsequence(LIS)

- Given a sequence of n numbers $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, the goal is to find the longest subsequence from A such that its values are (strictly) increasing.
LIS $=3$

$*$	$*$	1	2	5	$*$

- LIS can be solved in $O(n \lg n)$ sequential time.

Previous Results

Reference	Total Work	Span	Notes
Nakashima and Fujiwara 2006	$O(n \lg n)$	$O\left(\frac{n \lg n}{p}\right)$ or $O\left(k^{2} \lg n\right)$	Requires $p<n / k^{2}$.
Krusche and Tiskin 2009	$O\left(n \lg ^{2} n\right)$	$\tilde{O}\left(n^{\frac{2}{3}}\right)$	
Shen, Wan, Gu, and Sun 2022	$O\left(n \lg ^{3} n\right)$	$O\left(k \lg ^{2} n\right)$	
Gu, Men, Shen, Sun, and Wan 2023	$O(n \lg k)$		

p is the number of processors, k is the length of LIS.

Previous Results

Reference	Total Work	Span	Notes
Nakashima and Fujiwara 2006	$O(n \lg n)$	$O\left(\frac{n \lg n}{p}\right)$ or $O\left(k^{2} \lg n\right)$	Requires $p<n / k^{2}$.
Krusche and Tiskin 2009	$O\left(n \lg ^{2} n\right)$	$\tilde{O}\left(n^{\frac{2}{3}}\right)$	$O\left(k \lg ^{2} n\right)$
Shen, Wan, Gu, and Sun 2022	$O\left(n \lg ^{3} n\right)$	$O(k \lg n)$	
Gu, Men, Shen, Sun, and Wan 2023	$O(n \lg k)$		
Can we achieve nearly linear work and nearly constant span?			

[^0]
Our Result

Reference	Total Work	Span	Notes
Nakashima and Fujiwara 2006	$O(n \lg n)$	$O\left(\frac{n \lg n}{p}\right)$ or $O\left(k^{2} \lg n\right)$	Requires $p<n / k^{2}$.
Krusche and Tiskin 2009	$O\left(n \lg ^{2} n\right)$	$\tilde{O}\left(n^{\frac{2}{3}}\right)$	
Shen, Wan, Gu, and Sun 2022	$O\left(n \lg ^{3} n\right)$	$O\left(k \lg ^{2} n\right)$	$O(k \lg n)$
Gu, Men, Shen, Sun, and Wan 2023	$O(n \lg k)$	$O\left(\lg ^{4} n\right)$	Deterministic algorithm
Our result	$O\left(n \lg ^{2} n \lg \lg n\right)$	$O\left(\lg ^{4} n\right)$	Randomized, with $A C^{0}$
Our result	$O\left(n \lg ^{2} n\right)$		

p is the number of processors, k is the length of LIS.

EREW PRAM Model

memory

- Simultaneous Read/Write to any memory location by different processors is forbidden

Work and span

- The work is the total number of operations that all processors perform (running time if there is one processor).
- The span is the longest series of operations that have to be performed sequentially (running time if there are infinite processors).

Outline

- Implicit subunit-Monge matrix multiplication (ISMMM)
- Connection between LIS and ISMMM
- How to solve the ISMMM problem

Implicit subunit-Monge matrix: sub-permutation matrix

$j \underset{0}{\rightarrow}$

		1	2	3	4	5	6
$i 0$		0	0	0	0	0	0
$\downarrow 1$		0	0	0	0	1	0
2		0	0	0	1	0	0
3		0	0	0	0	0	0
4		0	0	0	0	0	1
5		0	0	0	0	0	0
6							

Sub-permutation matrix contains at most
one element equals to 1 each row and column

Implicit subunit-Monge matrix: sub-permutation matrix

$j \underset{0}{\rightarrow}$

i 0	0	0	0	0	0	0	0
$\downarrow 1$	0	0	0	0	0	1	0
2	0	0	0	0	1	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	1
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0

Sub-permutation matrix contains
at most 1 each row and column
the 0 -th column and last row are all 0

Implicit subunit-Monge matrix: sub-unit Monge matrix

Sub-permutation matrix contains at most 1 each row and column the 0 -th row and columns are all 0

Distribution matrix $M^{\Sigma}(i, j)=\sum_{\{\hat{\imath} \geq i, j \leq j\}} P(i, j)$, If P is a sub-permutation matrix, then M^{Σ} is a subunit-Monge matrix

Implicit subunit-Monge matrix multiplication

$j \rightarrow 2$				
i 0	0	1	0	0
$\downarrow 1$	0	0	0	0
2	0	0	1	0
3	0	0	0	0

We have two sub-permutation matrices

Implicit subunit-Monge matrix multiplication operator

Implicit subunit-Monge matrix multiplication

Implicit subunit-Monge matrix multiplication

$i 0$	0	1	2	2		0	1	2	2
$\downarrow 1$	0	0	1	1		0	1	1	1
2	0	0	1	1		0	1	1	1
3	0	0	0	0		0	0	0	0

Implicit subunit-Monge matrix multiplication

Implicit subunit-Monge matrix multiplication

$\begin{array}{llll}\text { J } \\ 0 & 1 & 2 & \end{array}$				
i 0	0	1	0	0
$\downarrow 1$	0	0	0	0
2	0	0	1	0
3	0	0	0	0

The input and output contains at most $O(n)$ non-zero terms, Can we compute the output fast in the parallel setting?

Connection between LIS and ISMMM

Theorem: If one can solve the ISMMM problem in $O(W(n))$ work and $O(S(n))$ span. Then, one can compute an LIS in $O(W(n) \lg n)$ work and $O(S(n) \lg n)$ span.

Connection between LIS and ISMMM

Theorem: If one can solve the ISMMM problem in $O(W(n))$ work and $O(S(n))$ span. Then, one can compute an LIS in $O(W(n) \lg n)$ work and $O(S(n) \lg n)$ span.

There is a parallel algorithm solving the ISMMM problem in $O(n \lg n)$ work and $O\left(\lg ^{3} n\right)$ span.

There is a parallel algorithm that computes an LIS in $O\left(n l g^{2} n\right)$ work and $O\left(\lg ^{4} n\right)$ span.

ISMMM: Framework of Krusche and Tiskin’s Algorithm 2010

Divide-and-conquer method

Implicit subunit-Monge matrix multiplication: Divide

$$
P_{C, l o}
$$

$P_{A, l o}$ is a sub-permutation matrix,
at most $\frac{n}{2}$ non-zero element.
At least $\frac{n}{2}$ rows contain only 0

Implicit subunit-Monge matrix multiplication: Divide

Implicit subunit-Monge matrix multiplication: Reduce subproblem size

Implicit subunit-Monge matrix multiplication

Implicit subunit-Monge matrix multiplication: Divide

Implicit subunit-Monge matrix multiplication: combine

how to get P_{C} ?

Implicit subunit-Monge matrix multiplication: difficulty of combine

Implicit subunit-Monge matrix multiplication: δ matrix

Implicit subunit-Monge matrix multiplication: δ matrix

$\delta(i, j)=$ the left upper area sum of $P_{c, l o}-$ the right bottom area sum of $P_{c, h i}$

Implicit subunit-Monge matrix multiplication: δ matrix

Green circle represents non-zero term of $P_{c, l o}$, Yellow star represents non-zero term of $P_{c, h i}$ $\delta(i, j)=2-1=1$

Implicit subunit-Monge matrix multiplication: δ matrix

Implicit subunit-Monge matrix multiplication: splitting line

Lemma: Given $P_{c, l o}$ and $P_{c, h i}$, if one can decide three area of δ in $O(W(n))$ work and $O(S(n))$ span, one can compute P_{c} in $O(W(n))$ work and $O(S(n))$ span.

Implicit subunit-Monge matrix multiplication

Given $P_{c, l o}$ and $P_{c, h i}$, how can we compute the line splitting the negative and non-negative area of δ in the parallel model?

There is an algorithm computing the splitting line in $O(n)$ work and $O\left(\lg ^{2} n\right)$ span.

Implicit subunit-Monge matrix multiplication

We partition δ to $\frac{n}{L} \times \frac{n}{L}$ grid, each grid contains $L \times L$ points, we only consider the top-left $\delta(i, j)$ point. $L=O\left(\lg ^{2} n\right)$,

Instead of computing the splitting line, we compute the point that is closest to the splitting line, in each row grid .

We reduce the size of the problem to $O\left(\frac{n}{L}\right)$

Implicit subunit-Monge matrix multiplication

Divide-and-conquer algorithm: Input is an index rectangle $\left[i_{l o}, i_{h i}\right] \times\left[j_{l o}, j_{h i}\right]$ that splitting line crosses.

Implicit subunit-Monge matrix multiplication

Divide-and-conquer algorithm: Input is a rectangle $\left[i_{l o}, i_{h i}\right] \times\left[j_{l o}, j_{h i}\right]$ that splitting line crosses.

To recurse on the small problem, we require the top border and left border $\delta(i, j)$ is computed. Those points are used to compute red points.

Implicit subunit-Monge matrix multiplication

Divide-and-conquer algorithm: Input is a rectangle $\left[i_{l o}, i_{h i}\right] \times\left[j_{l o}, j_{h i}\right]$ that splitting line crosses.

We require the top border and left border $\delta(i, j)$ is computed.
The we compute the middle line $\delta\left(i_{m i d}, j\right)$ value, for $j \in\left[j_{l o}, j_{h i}\right]$ we can use the mid $\delta\left(i_{\text {mid }}, j_{l o}\right)$ value.

Implicit subunit-Monge matrix multiplication

Green circle represents non-zero term of $P_{c, l o}$, Yellow pentagram represents non-zero term of $P_{c, h i}$ $\delta\left(i, j^{\prime}\right)-\delta(i, j)=$ The green area sum of $P_{c, l o}$ + the yellow area sum of $P_{c, h i}$

Implicit subunit-Monge matrix multiplication

The we compute the mid line $\delta\left(i_{\text {mid }}, j\right)$ value, for $j \in\left[j_{l o}, j_{h i}\right]$ we can use the mid $\delta\left(i_{\text {mid }}, j_{l o}\right)$ value.

We need a data structure to answer The green area sum of $P_{c, l o}$ + the yellow area sum of $P_{c, h i}$.

Key observation: there are only $O(L)$ non-zero elements in this area. We can sort those elements, it takes $O(\operatorname{Llg} L)$ to construct the data structure and $O(\lg L)$ to make a query.

Implicit subunit-Monge matrix multiplication

The we compute the mid line $\delta\left(i_{\text {mid }}, j\right)$ value, for $j \in\left[j_{l o}, j_{h i}\right]$ we can use the mid $\delta\left(i_{\text {mid }}, j_{l o}\right)$ value.

We need a data structure to answer The green area sum of $P_{c, l o}$ + the yellow area sum of $P_{c, h i}$.

Key observation: there are only $O(L)$ non-zero elements in this area. We can sort those elements, it takes $O(\operatorname{Llg} L)$ to construct the data structure and $O(\lg L)$ to make a query.

We have $O\left(\frac{n}{L}\right)$ such data structure, so it takes $O(\operatorname{nlg} L)$ times to construct all data structure.

Implicit subunit-Monge matrix multiplication

The we compute the mid line $\delta\left(i_{\text {mid }}, j\right)$ value, for $j \in\left[j_{l o}, j_{h i}\right]$ we can use the mid $\delta\left(i_{\text {mid }}, j_{l o}\right)$ value.

We need a data structure to answer The green area sum of $P_{c, l o}$ + the yellow area sum of $P_{c, h i}$.

Key observation: there is only $O(L)$ non-zero elements in this area. We can sort those elements, it takes $O(\operatorname{Llg} L)$ to construct the data structure and $O(\lg L)$ to make a query.

Last observation: sort $L=O\left(\lg ^{2} n\right)$ elements can be done in $O(L)$ work if we use integer sort. The data structure can be Constructed in $O(n)$ work.

Implicit subunit-Monge matrix multiplication

Divide-and-conquer algorithm: Input is a rectangle
 $\left[i_{l o}, i_{h i}\right] \times\left[j_{l o}, j_{h i}\right]$ that splitting line crosses.

Then we recurse on the two subproblems, each recursion decreases the rectangle area by 2 . We have at most $O(\lg n)$ level of recursion. We only have $O\left(\frac{n}{L}\right)$ elements. The total work is $O\left(\frac{n}{L} \lg n \lg L\right)$ and span is $O\left(\lg ^{2} n\right)$.

Computing data structure takes $O(n)$ work.

Implicit subunit-Monge matrix multiplication

Given $P_{c, l o}$ and $P_{c, h i}$, one can compute P_{c} in $O(n)$ work and $O\left(\lg ^{2} n\right)$ span.

Implicit subunit-Monge matrix multiplication

Given $P_{c, l o}$ and $P_{c, h i}$, one can compute P_{c} in $O(n)$ work and $O\left(\lg ^{2} n\right)$ span.

There is a parallel algorithm solving the ISMMM problem in $O(n l g n)$ work and $O\left(\lg ^{3} n\right)$ span.

There is a parallel algorithm that computes an LIS in $O\left(n l g^{2} n\right)$ work and $O\left(\lg ^{4} n\right)$ span.

Future work

- "Rank" of all elements?
- i-th "rank" is the LIS ending at i-th element
- Fast parallel dynamic LIS. (sequential: KKociumaka \& Seddighin 2021])
- Weighted LIS?
- Sublinear time parallel approximated LIS [Andoni, Nosatzki, Sinha, \& Stein 2022]
- Work-Optimal with polylog(n) span LIS?

Q \& A

[^0]: p is the number of processors, k is the length of LIS.

