
Nearly Optimal Parallel Longest
Increasing Subsequence

1

Nairen Cao, Shang-En Huang, Hsin-Hao Su
SPAA 2023

Longest increasing subsequence(LIS)

• Given a sequence of 𝑛 numbers 𝐴 = 𝑎!, 𝑎", … , 𝑎# , the goal is to
find the longest subsequence from 𝐴 such that its values are (strictly)
increasing.

2

4 6 1 2 5 3n = 6

* * 1 2 5 *LIS = 3

• LIS can be solved in 𝑂(𝑛 lg 𝑛) sequential time.

Previous Results
Reference Total Work Span Notes

Nakashima and Fujiwara 2006 𝑂(𝑛 lg 𝑛) 𝑂 ! "# !
$

or 𝑂(𝑘% lg 𝑛) Requires 𝑝 < 𝑛/𝑘%.

Krusche and Tiskin 2009 𝑂(𝑛 lg% 𝑛) +𝑂(𝑛
%
&)

Shen, Wan, Gu, and Sun 2022 𝑂(𝑛 lg& 𝑛) 𝑂(𝑘 lg% 𝑛)

Gu, Men, Shen, Sun, and Wan 2023 𝑂(𝑛 lg 𝑘) 𝑂(𝑘 lg 𝑛)

3

𝑝 is the number of processors, 𝑘 is the length of LIS.

Previous Results
Reference Total Work Span Notes

Nakashima and Fujiwara 2006 𝑂(𝑛 lg 𝑛) 𝑂 ! "# !
$

or 𝑂(𝑘% lg 𝑛) Requires 𝑝 < 𝑛/𝑘%.

Krusche and Tiskin 2009 𝑂(𝑛 lg% 𝑛) +𝑂(𝑛
%
&)

Shen, Wan, Gu, and Sun 2022 𝑂(𝑛 lg& 𝑛) 𝑂(𝑘 lg% 𝑛)

Gu, Men, Shen, Sun, and Wan 2023 𝑂(𝑛 lg 𝑘) 𝑂(𝑘 lg 𝑛)

4

𝑝 is the number of processors, 𝑘 is the length of LIS.

Can we achieve nearly linear work and nearly constant span?

Our Result
Reference Total Work Span Notes

Nakashima and Fujiwara 2006 𝑂(𝑛 lg 𝑛) 𝑂 ! "# !
$

or 𝑂(𝑘% lg 𝑛) Requires 𝑝 < 𝑛/𝑘%.

Krusche and Tiskin 2009 𝑂(𝑛 lg% 𝑛) +𝑂(𝑛
%
&)

Shen, Wan, Gu, and Sun 2022 𝑂(𝑛 lg& 𝑛) 𝑂(𝑘 lg% 𝑛)

Gu, Men, Shen, Sun, and Wan 2023 𝑂(𝑛 lg 𝑘) 𝑂(𝑘 lg 𝑛)

Our result 𝑂(𝑛 lg% 𝑛 lg lg 𝑛) 𝑂(lg' 𝑛) Deterministic algorithm

Our result 𝑂(𝑛 lg% 𝑛) 𝑂(lg' 𝑛) Randomized,with 𝐴𝐶(
operations

5

𝑝 is the number of processors, 𝑘 is the length of LIS.

EREW PRAM Model

processor
1

memory

6

processor
2

processor
p

…

• Simultaneous Read/Write to any
memory location by different
processors is forbidden

Work and span
• The work is the total number of operations that all processors

perform (running time if there is one processor).
• The span is the longest series of operations that have to be

performed sequentially (running time if there are infinite
processors).

7

Outline

• Implicit subunit-Monge matrix multiplication (ISMMM)
• Connection between LIS and ISMMM
• How to solve the ISMMM problem

8

Implicit subunit-Monge matrix: sub-permutation
matrix

9

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

2 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

𝑖
↓

𝑗 →

Sub-permutation matrix contains at most
one element equals to 1 each row and column

10

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

2 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

𝑖
↓

𝑗 →

Sub-permutation matrix contains
at most 1 each row and column
the 0-th column and last row are all 0

Implicit subunit-Monge matrix: sub-permutation
matrix

11

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

2 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

𝑖
↓

𝑗 →

Sub-permutation matrix contains
at most 1 each row and column
the 0-th row and columns are all 0

0 1 2 3 4 5 6

0 0 0 0 0 1 2 3

1 0 0 0 0 1 2 3

2 0 0 0 0 1 1 2

3 0 0 0 0 0 0 1

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

𝑖
↓

𝑗 →

Distribution matrix 𝑀) 𝑖, 𝑗 = ∑ +̂,-,/̂01 𝑃(𝑖, 𝑗),
If 𝑃 is a sub-permutation matrix,
then 𝑀) is a subunit-Monge matrix

𝑀) 1,5 = 2

Implicit subunit-Monge matrix: sub-unit Monge
matrix

12

Implicit subunit-Monge matrix multiplication
0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 0 0 1 0

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

⊡ We have two sub-permutation matrices

Implicit subunit-Monge matrix multiplication operator

13

Implicit subunit-Monge matrix multiplication
0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 0 0 1 0

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

0 1 2 3

0 0 1 2 2

1 0 0 1 1

2 0 0 1 1

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 1 2 2

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

𝑖
↓

𝑗 →

⊡

Compute the distribution matrix

14

Implicit subunit-Monge matrix multiplication
0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 0 0 1 0

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

0 1 2 3

0 0 1 2 2

1 0 0 1 1

2 0 0 1 1

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 1 2 2

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 1 2 2

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

𝑖
↓

𝑗 →

⊡

Compute the distribution matrix

(min, +) product =

Subunit-Monge matrix

15

Implicit subunit-Monge matrix multiplication
0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 0 0 1 0

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

0 1 2 3

0 0 1 2 2

1 0 0 1 1

2 0 0 1 1

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 1 2 2

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 1 2 2

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

𝑖
↓

𝑗 →

⊡

Compute the distribution matrix

(min, +) product =

0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

Recover the sub-permutation matrix

=

16

Implicit subunit-Monge matrix multiplication
0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 0 0 1 0

3 0 0 0 0

𝑖
↓

𝑗 →
0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

⊡

0 1 2 3

0 0 0 1 0

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

𝑖
↓

𝑗 →

=

The input and output contains at most 𝑂 𝑛 non-zero terms,
Can we compute the output fast in the parallel setting?

Connection between LIS and ISMMM

17

Theorem: If one can solve the ISMMM problem in 𝑂 𝑊 𝑛 work
and 𝑂 𝑆 𝑛 span. Then, one can compute an LIS in 𝑂 𝑊 𝑛 lg 𝑛
work and 𝑂 𝑆 𝑛 lg 𝑛 span.

Connection between LIS and ISMMM

18

Theorem: If one can solve the ISMMM problem in 𝑂 𝑊 𝑛 work
and 𝑂 𝑆 𝑛 span. Then, one can compute an LIS in 𝑂 𝑊 𝑛 lg 𝑛
work and 𝑂 𝑆 𝑛 lg 𝑛 span.

There is a parallel algorithm solving the ISMMM
problem in 𝑂 𝑛𝑙𝑔𝑛 work and 𝑂 lg8 𝑛 span.

There is a parallel algorithm that computes an LIS
in 𝑂 𝑛𝑙𝑔9𝑛 work and 𝑂 lg: 𝑛 span.

ISMMM: Framework of Krusche and Tiskin’s Algorithm
2010

19

𝑃$𝑃%,'(
𝑃),*+

𝑃),'(

⊡ =𝑃%,*+

Divide-and-conquer method

Implicit subunit-Monge matrix multiplication: Divide

20

𝑃$,*+

𝑃),*+
⊡ =𝑃%,*+

𝑃%,*+ is a sub-permutation matrix,
at most #

"
non-zero element.

At least #
"

rows contain only 0

Implicit subunit-Monge matrix multiplication: Divide

21

𝑃$,*+

𝑃),*+
⊡ =𝑃%,*+

Contains only 0
No information

Implicit subunit-Monge matrix multiplication: Reduce
subproblem size

22

𝑃$,*+
𝑃),*+

⊡ =𝑃%,*+

𝑃′$,*+𝑃′),*+
⊡ =𝑃′%,*+

Remove !
%

rows Remove !
%

columns Add back 0 rows and columns

Implicit subunit-Monge matrix multiplication

23

𝑃$,'(𝑃%,'(

𝑃),'(

⊡ =

Implicit subunit-Monge matrix multiplication: Divide

24

𝑃$𝑃%,'(
𝑃),*+

𝑃),'(

⊡ =𝑃%,*+

𝑃$,'(𝑃$,*+
We have 2 size ;

9 subproblems

Implicit subunit-Monge matrix multiplication: combine

25

𝑃$𝑃%,'(
𝑃),*+

𝑃),'(

⊡ =𝑃%,*+

𝑃$,'(𝑃$,*+ 𝑃$
(𝑚𝑖𝑛, +) ≠

how to get 𝑃$?

Implicit subunit-Monge matrix multiplication: difficulty of
combine

26

𝑃$

𝑃),*+

𝑃),'(

⊡ =𝑃%,*+

𝑃$,'(𝑃$,*+ 𝑃$(𝑚𝑖𝑛, +) ≠

𝑃%,'(

Implicit subunit-Monge matrix multiplication: 𝛿 matrix

27

𝑃$,'(𝑃$,*+ 𝑃$

𝛿

We can use 𝛿 to recover 𝑃!

We can first use 𝑃!,#$ and 𝑃!,%& to compute 𝛿

Implicit subunit-Monge matrix multiplication: 𝛿 matrix

28

𝑃$,'(𝑃$,*+

𝛿

𝛿 𝑖, 𝑗 = the left upper area sum of 𝑃<,=> −
the right bottom area sum of 𝑃<,?@

𝑃$

Implicit subunit-Monge matrix multiplication: 𝛿 matrix

29

𝑃$,'(𝑃$,*+

𝛿

Green circle represents non-zero term of 𝑃.,*+,
Yellow star represents non-zero term of 𝑃.,'(
𝛿 𝑖, 𝑗 = 2 – 1 = 1

𝑃$

Implicit subunit-Monge matrix multiplication: 𝛿 matrix

30

𝑃$,'(𝑃$,*+

Green circle represents non-zero term of 𝑃.,*+,
Yellow star represents non-zero term of 𝑃.,'(
𝛿 𝑖, 𝑗 = 2 – 1 = 1

If we increase 𝑖 or 𝑗, 𝛿 𝑖, 𝑗 never decreases.
𝛿

𝑖

𝑗

𝑃$

Implicit subunit-Monge matrix multiplication: splitting
line

31

𝛿

All 𝛿 𝑖, 𝑗 < 0 All 𝛿 𝑖, 𝑗 = 0

All 𝛿 𝑖, 𝑗 > 0

Lemma: Given 𝑃<,=> and 𝑃<,?@, if one can decide three area of 𝛿 in 𝑂 𝑊 𝑛 work and
𝑂 𝑆 𝑛 span, one can compute 𝑃< in 𝑂 𝑊 𝑛 work and 𝑂 𝑆 𝑛 span.

𝑃$

Implicit subunit-Monge matrix multiplication

32

𝛿

Given 𝑃<,=> and 𝑃<,?@, how can we compute
the line splitting the negative and
non-negative area of 𝛿 in the parallel model?

There is an algorithm computing the splitting line in
𝑂(𝑛) work and 𝑂 lg9 𝑛 span.

𝑃$,'(𝑃$,*+

Implicit subunit-Monge matrix multiplication

33

𝛿

We partition 𝛿 to ;A×
;
A grid, each grid contains 𝐿×𝐿 points,

we only consider the top-left 𝛿(𝑖, 𝑗) point. 𝐿 = 𝑂(lg9 𝑛),

Instead of computing the splitting line, we compute
the point that is closest to the splitting line, in each row grid .

We reduce the size of the problem to 𝑂(#
1
)

Implicit subunit-Monge matrix multiplication

34

Divide-and-conquer algorithm: Input is an index rectangle
𝑖=>, 𝑖?@ ×[𝑗=>, 𝑗?@] that splitting line crosses.

𝑗#$ 𝑗%&

𝑖#$

𝑖%&

The algorithm runs on the
green area and recurse on
small problem

Implicit subunit-Monge matrix multiplication

35

Divide-and-conquer algorithm: Input is a rectangle
𝑖=>, 𝑖?@ ×[𝑗=>, 𝑗?@] that splitting line crosses.

To recurse on the small problem, we require
the top border and left border 𝛿 𝑖, 𝑗 is computed.
Those points are used to compute red points.

𝑗#$ 𝑗%&

𝑖#$

𝑖%&

Implicit subunit-Monge matrix multiplication

36

Divide-and-conquer algorithm: Input is a rectangle
𝑖=>, 𝑖?@ ×[𝑗=>, 𝑗?@] that splitting line crosses.

We require the top border and left border 𝛿 𝑖, 𝑗 is computed.

The we compute the middle line 𝛿 𝑖B@C, 𝑗 value, for 𝑗 ∈ [𝑗=>, 𝑗?@]
we can use the mid 𝛿 𝑖B@C, 𝑗=> value.

𝑖'&(

𝑗#$ 𝑗%&

𝑖#$

𝑖%&

Implicit subunit-Monge matrix multiplication

37

𝛿

Green circle represents non-zero term of 𝑃.,*+,
Yellow pentagram represents non-zero term of 𝑃.,'(
𝛿 𝑖, 𝑗′ − 𝛿 𝑖, 𝑗 = The green area sum of 𝑃.,*+
+ the yellow area sum of 𝑃.,'(

𝑗 𝑗’

Implicit subunit-Monge matrix multiplication

38

The we compute the mid line 𝛿 𝑖B@C, 𝑗 value, for 𝑗 ∈ [𝑗=>, 𝑗?@]
we can use the mid 𝛿 𝑖B@C, 𝑗=> value.

We need a data structure to answer The green area sum of 𝑃<,=>
+ the yellow area sum of 𝑃<,?@.

Key observation: there are only 𝑂(𝐿) non-zero elements in
this area. We can sort those elements, it takes 𝑂 Llg 𝐿 to
construct the data structure and 𝑂(lg 𝐿) to make a query.

Implicit subunit-Monge matrix multiplication

39

The we compute the mid line 𝛿 𝑖B@C, 𝑗 value, for 𝑗 ∈ [𝑗=>, 𝑗?@]
we can use the mid 𝛿 𝑖B@C, 𝑗=> value.

We need a data structure to answer The green area sum of 𝑃<,=>
+ the yellow area sum of 𝑃<,?@.

Key observation: there are only 𝑂(𝐿) non-zero elements in
this area. We can sort those elements, it takes 𝑂 Llg 𝐿 to
construct the data structure and 𝑂(lg 𝐿) to make a query.

We have 𝑂(;A) such data structure, so it takes 𝑂 nlg 𝐿 times
to construct all data structure.

Implicit subunit-Monge matrix multiplication

40

The we compute the mid line 𝛿 𝑖B@C, 𝑗 value, for 𝑗 ∈ [𝑗=>, 𝑗?@]
we can use the mid 𝛿 𝑖B@C, 𝑗=> value.

We need a data structure to answer The green area sum of 𝑃<,=>
+ the yellow area sum of 𝑃<,?@.

Key observation: there is only 𝑂(𝐿) non-zero elements in
this area. We can sort those elements, it takes 𝑂 Llg 𝐿 to
construct the data structure and 𝑂(lg 𝐿) to make a query.

Last observation: sort 𝐿 = 𝑂(lg9 𝑛) elements can be done
in 𝑂(𝐿) work if we use integer sort. The data structure can be
Constructed in 𝑂(𝑛) work.

Implicit subunit-Monge matrix multiplication

41

Divide-and-conquer algorithm: Input is a rectangle
𝑖=>, 𝑖?@ ×[𝑗=>, 𝑗?@] that splitting line crosses.

Then we recurse on the two subproblems, each recursion
decreases the rectangle area by 2. We have at most 𝑂(lg 𝑛) level
of recursion. We only have 𝑂(;

A
) elements.

The total work is 𝑂(;A lg 𝑛 lg 𝐿) and span is 𝑂(lg9 𝑛).

Computing data structure takes 𝑂(𝑛) work.

Implicit subunit-Monge matrix multiplication

42

Given 𝑃<,=> and 𝑃<,?@, one can compute 𝑃< in 𝑂 𝑛
work and 𝑂 lg9 𝑛 span.

Implicit subunit-Monge matrix multiplication

43

Given 𝑃<,=> and 𝑃<,?@, one can compute 𝑃< in 𝑂 𝑛
work and 𝑂 lg9 𝑛 span.

There is a parallel algorithm solving the ISMMM
problem in 𝑂 𝑛𝑙𝑔𝑛 work and 𝑂 lg8 𝑛 span.

There is a parallel algorithm that computes an LIS
in 𝑂 𝑛𝑙𝑔9𝑛 work and 𝑂 lg: 𝑛 span.

Future work

• “Rank” of all elements?
• i-th “rank” is the LIS ending at i-th element
• Fast parallel dynamic LIS. (sequential: [Kociumaka & Seddighin 2021])

• Weighted LIS?

• Sublinear time parallel approximated LIS [Andoni, Nosatzki, Sinha, & Stein 2022]

• Work-Optimal with polylog(n) span LIS?

44

https://arxiv.org/abs/2011.10874
https://arxiv.org/abs/2112.05106

Q & A

45

