Nearly Optimal Parallel Longest Increasing Subsequence

Nairen Cao, Shang-En Huang, Hsin-Hao Su SPAA 2023

Longest increasing subsequence(LIS)

• Given a sequence of n numbers $A = (a_1, a_2, ..., a_n)$, the goal is to find the longest subsequence from A such that its values are (strictly) increasing.

• LIS can be solved in $O(n \lg n)$ sequential time.

Previous Results

Reference	Total Work	Span	Notes		
Nakashima and Fujiwara 2006	$O(n \lg n)$	$O\left(\frac{n \lg n}{p}\right)$ or $O(k^2 \lg n)$	Requires $p < n/k^2$.		
Krusche and Tiskin 2009	$O(n \lg^2 n)$	$\tilde{O}(n^{\frac{2}{3}})$			
Shen, Wan, Gu, and Sun 2022	$O(n \lg^3 n)$	$O(k \lg^2 n)$			
Gu, Men, Shen, Sun, and Wan 2023	$O(n \lg k)$	$O(k \lg n)$			

p is the number of processors, k is the length of LIS.

Previous Results

Reference	Total Work	Span	Notes
Nakashima and Fujiwara 2006	$O(n \lg n)$	$O\left(\frac{n \lg n}{p}\right)$ or $O(k^2 \lg n)$	Requires $p < n/k^2$.
Krusche and Tiskin 2009	$O(n \lg^2 n)$	$\tilde{O}(n^{\frac{2}{3}})$	
Shen, Wan, Gu, and Sun 2022	$O(n \lg^3 n)$	$O(k \lg^2 n)$	
Gu, Men, Shen, Sun, and Wan 2023	$O(n \lg k)$	$O(k \lg n)$	
Can wa achiava na	arly linear we	ork and noarly consta	nt chan?
Can we achieve he	any inteal wo	nk and hearry consta	init span:

p is the number of processors, k is the length of LIS.

Our Result

Reference	Total Work	Span	Notes		
Nakashima and Fujiwara 2006	$O(n \lg n)$	$O\left(\frac{n \lg n}{p}\right)$ or $O(k^2 \lg n)$	Requires $p < n/k^2$.		
Krusche and Tiskin 2009	$O(n \lg^2 n)$	$\tilde{O}(n^{\frac{2}{3}})$			
Shen, Wan, Gu, and Sun 2022	$O(n \lg^3 n)$	$O(k \lg^2 n)$			
Gu, Men, Shen, Sun, and Wan 2023	$O(n \lg k)$	$O(k \lg n)$			
Our result	$O(n \lg^2 n \lg \lg n)$	$O(\lg^4 n)$	Deterministic algorithm		
Our result	$O(n \lg^2 n)$	$O(\lg^4 n)$	Randomized, with AC ⁰ operations		

p is the number of processors, k is the length of LIS.

EREW PRAM Model

 Simultaneous Read/Write to any memory location by different processors is forbidden

Work and span

- The **work** is the **total** number of operations that all processors perform (running time if there is one processor).
- The **span** is the **longest** series of operations that have to be performed sequentially (running time if there are infinite processors).

Outline

- Implicit subunit-Monge matrix multiplication (ISMMM)
- Connection between LIS and ISMMM
- How to solve the ISMMM problem

Implicit subunit-Monge matrix: sub-permutation matrix

	J	0	1	2	3	4	5	6	
i	0		0	0	0	0	0	0	
\downarrow	1		0	0	0	0	1	0	
	2		0	0	0	1	0	0	
	3		0	0	0	0	0	0	
	4		0	0	0	0	0	1	
	5		0	0	0	0	0	0	
	6								

 $i \rightarrow$

Sub-permutation matrix contains at most one element equals to 1 each row and column

Implicit subunit-Monge matrix: sub-permutation matrix

	J	0	1	2	3	4	5	6
i	0	0	0	0	0	0	0	0
\downarrow	1	0	0	0	0	0	1	0
	2	0	0	0	0	1	0	0
	3	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	1
	5	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0

 $i \rightarrow$

Sub-permutation matrix contains at most 1 each row and column the 0-th column and last row are all 0

Implicit subunit-Monge matrix: sub-unit Monge matrix

Sub-permutation matrix contains at most 1 each row and column the 0-th row and columns are all 0

Distribution matrix $M^{\Sigma}(i,j) = \sum_{\{i \ge i, j \le j\}} P(i,j)$, If *P* is a sub-permutation matrix, then M^{Σ} is a subunit-Monge matrix

We have two sub-permutation matrices

The input and output contains at most O(n) non-zero terms, Can we compute the output fast in the parallel setting?

Connection between LIS and ISMMM

Theorem: If one can solve the ISMMM problem in O(W(n)) work and O(S(n)) span. Then, one can compute an LIS in $O(W(n) \lg n)$ work and $O(S(n) \lg n)$ span.

Connection between LIS and ISMMM

Theorem: If one can solve the ISMMM problem in O(W(n)) work and O(S(n)) span. Then, one can compute an LIS in $O(W(n) \lg n)$ work and $O(S(n) \lg n)$ span.

There is a parallel algorithm solving the ISMMM problem in O(nlgn) work and $O(lg^3 n)$ span.

There is a parallel algorithm that computes an LIS in $O(nlg^2n)$ work and $O(lg^4n)$ span.

ISMMM: Framework of Krusche and Tiskin's Algorithm 2010 $P_{B,lo}$ $P_{A,hi}$ $P_{A,lo}$ P_{C} $P_{B,hi}$

Divide-and-conquer method

Implicit subunit-Monge matrix multiplication: Reduce subproblem size

Implicit subunit-Monge matrix multiplication: difficulty of combine

 $\delta(i, j)$ = the left upper area sum of $P_{c,lo}$ – the right bottom area sum of $P_{c,hi}$

Green circle represents non-zero term of $P_{c,lo}$, Yellow star represents non-zero term of $P_{c,hi}$ $\delta(i,j) = 2-1 = 1$

Implicit subunit-Monge matrix multiplication: splitting line

Lemma: Given $P_{c,lo}$ and $P_{c,hi}$, if one can decide three area of δ in O(W(n)) work and O(S(n)) span, one can compute P_c in O(W(n)) work and O(S(n)) span.

Given $P_{c,lo}$ and $P_{c,hi}$, how can we compute the line splitting the negative and non-negative area of δ in the parallel model?

There is an algorithm computing the splitting line in O(n) work and $O(\lg^2 n)$ span.

We partition δ to $\frac{n}{L} \times \frac{n}{L}$ grid, each grid contains $L \times L$ points, we only consider the top-left $\delta(i, j)$ point. $L = O(\lg^2 n)$,

Instead of computing the splitting line, we compute the point that is closest to the splitting line, in each row grid.

We reduce the size of the problem to
$$O(\frac{n}{L})$$

Divide-and-conquer algorithm: Input is an index rectangle $[i_{lo}, i_{hi}] \times [j_{lo}, j_{hi}]$ that splitting line crosses.

Divide-and-conquer algorithm: Input is a rectangle $[i_{lo}, i_{hi}] \times [j_{lo}, j_{hi}]$ that splitting line crosses.

To recurse on the small problem, we require the top border and left border $\delta(i, j)$ is computed. Those points are used to compute red points.

Divide-and-conquer algorithm: Input is a rectangle $[i_{lo}, i_{hi}] \times [j_{lo}, j_{hi}]$ that splitting line crosses.

We require the top border and left border $\delta(i, j)$ is computed.

The we compute the middle line $\delta(i_{mid}, j)$ value, for $j \in [j_{lo}, j_{hi}]$ we can use the mid $\delta(i_{mid}, j_{lo})$ value.

Green circle represents non-zero term of $P_{c,lo}$, Yellow pentagram represents non-zero term of $P_{c,hi}$ $\delta(i,j') - \delta(i,j) =$ The green area sum of $P_{c,lo}$ + the yellow area sum of $P_{c,hi}$

The we compute the mid line $\delta(i_{mid}, j)$ value, for $j \in [j_{lo}, j_{hi}]$ we can use the mid $\delta(i_{mid}, j_{lo})$ value.

We need a data structure to answer The green area sum of $P_{c,lo}$ + the yellow area sum of $P_{c,hi}$.

Key observation: there are only O(L) non-zero elements in this area. We can sort those elements, it takes O(Llg L) to construct the data structure and O(lg L) to make a query.

The we compute the mid line $\delta(i_{mid}, j)$ value, for $j \in [j_{lo}, j_{hi}]$ we can use the mid $\delta(i_{mid}, j_{lo})$ value.

We need a data structure to answer The green area sum of $P_{c,lo}$ + the yellow area sum of $P_{c,hi}$.

Key observation: there are only O(L) non-zero elements in this area. We can sort those elements, it takes O(Llg L) to construct the data structure and O(lg L) to make a query.

We have $O(\frac{n}{L})$ such data structure, so it takes $O(\operatorname{nlg} L)$ times to construct all data structure.

The we compute the mid line $\delta(i_{mid}, j)$ value, for $j \in [j_{lo}, j_{hi}]$ we can use the mid $\delta(i_{mid}, j_{lo})$ value.

We need a data structure to answer The green area sum of $P_{c,lo}$ + the yellow area sum of $P_{c,hi}$.

Key observation: there is only O(L) non-zero elements in this area. We can sort those elements, it takes O(Llg L) to construct the data structure and O(lg L) to make a query.

Last observation: sort $L = O(\lg^2 n)$ elements can be done in O(L) work if we use integer sort. The data structure can be Constructed in O(n) work.

Divide-and-conquer algorithm: Input is a rectangle $[i_{lo}, i_{hi}] \times [j_{lo}, j_{hi}]$ that splitting line crosses.

Then we recurse on the two subproblems, each recursion decreases the rectangle area by 2. We have at most $O(\lg n)$ level of recursion. We only have $O(\frac{n}{L})$ elements.

The total work is $O(\frac{n}{L} \lg n \lg L)$ and span is $O(\lg^2 n)$.

Computing data structure takes O(n) work.

Given $P_{c,lo}$ and $P_{c,hi}$, one can compute P_c in O(n) work and $O(\lg^2 n)$ span.

Given $P_{c,lo}$ and $P_{c,hi}$, one can compute P_c in O(n) work and $O(\lg^2 n)$ span. There is a parallel algorithm solving the ISMMM problem in O(nlgn) work and $O(\lg^3 n)$ span.

There is a parallel algorithm that computes an LIS in $O(nlg^2n)$ work and $O(lg^4n)$ span.

Future work

- "Rank" of all elements?
 - i-th "rank" is the LIS ending at i-th element
 - Fast parallel dynamic LIS. (sequential: [Kociumaka & Seddighin 2021])
- Weighted LIS?
- Sublinear time parallel approximated LIS [Andoni, Nosatzki, Sinha, & Stein 2022]
- Work-Optimal with polylog(n) span LIS?

Q & A