Nested Active-Time
Scheduling

Nairen Cao, Jeremy T. Fineman, Shi Li,
Julian Mestre, Katina Russell, Seeun William Umboh
ISSAC 2022

Example of active time problem: g = 2

* Job 1: window: [0,5); length2 « Job 3: window: [0,2); length 1
* Job 2: window: [0,3); length2 « Job 4: window: [3, 5); length 1

Job window _

ti=0 t=1 t=2 t=3 t=4 t=5

ARSI e ——
scheduling : : : : :

Active-time problem: definition

* Given g > 0 machines.
* Given a set of jobs /, where each job j € J has release time 1,
deadline d;, and length p;. We call [r}, d;) the job j’s window.

* Time is organized into discrete (integer) steps or slots, and

preemption is allowed but only at slot boundaries. A time slot is
active if there is a job scheduled inside.

* Target: find a schedule with minimum number of active steps that
schedule all jobs within their windows

Nested Active-time problem: definition

* The same as active time problem. In addition,

* For each pair job, either their windows are disjoint, or one is fully
contained in the other.

Example of active time problem: g = 2

* Job 1: window: [0,5); length2 « Job 3: window: [0,2); length 1
* Job 2: window: [0,3);length2 + Job 4: window: [3, 5); length 1

A feasible | _ —
scheduling :

Related work

e N

Chang, Gabow, and Khuller 2-approximate Linear programming General case
2014

Kumar and Khuller 2018 2-approximate Greedy algorithm General case
Calinescu and Wang 2021 2-approximate Linear programming General case

Sagnik and Manish 2021 NP complete General case

Related work

e L L

Chang, Gabow, and Khuller 2-approximate Linear programming General case
2014

Kumar and Khuller 2018 2-approximate Greedy algorithm General case
Calinescu and Wang 2021 2-approximate Linear programming General case
Sagnik and Manish 2021 NP complete General case
Our result NP complete Nested case
Our result 1.8 approximate Linear programming Nested case

rounding

Outline

* Linear programming preprocessing
* Linear programming rounding algorithm
* The feasibility of our method

Linear programming: preprocessing

* Given an instance (g, /), we can
construct a tree based on the
job window and time slot.

 For node i and its child node t,
we have K; C K;.

[Job2] [Jeb3T [Jobd

| Job5 [Job6] [Job7 |

Ki - [Ti, dl)

11

Linear programming: preprocessing example

* Given an instance (g,]), we can [0,10)
construct a tree based on the

job window and time slot. 03" N~ [7.9)

 For node i and its child node t,

we have K; C K;. [OQ‘/ \2,3) \[4,6)

- Job1]

[5
[Job2] [Job3 [Job4 |
| Job5 JJob6] [Job7]

12

Linear programming preprocessing: Why?

» Specify the ownership of a time slot
e Extra constraint for linear programming

Linear programming: preprocessing

 We don’t want to double count the
time slot, so we only consider a
time slot if it doesn’t appear in the
descendant node.

[0,10)

03" NET~—17.9)

[OQ‘/ N2 \[46)

56

Linear programming: variable

* We remvoe a time slot if it appears
in its descendant node.

e Variable:

* x(i) be the number of active time
slots in node i and

* y(i,j) be the number of time slot job
J placed in node i.

Linear programming: formulation

e Variable: [0}10)
w7,
* x(i): # active time slots in node i %é Z 27
* y(i,j): #time slot job j placed in node i. [0,3) 4,7
_ A v
* Constraints: Z% ﬁ/,-

(Each job j must be scheduled. [O;Q‘/ \{2;3)
Z;V(i,j) > pj

For each job j, we can at most schedule x(i) in node i.
y(i,j) < x(i)

. We have only g machines.

> () < g x()
J

16

Linear programming: integer gap

J=1{12,..,g+ 1} with length 1

- <
-/

Optimal integer solution: 2

_ J

N

Linear programming solution:
g+1 .
T — 1(when g is large)

. /

Linear programming processing: enhance [p

e Variable: [0,10)

e 00
* x(i): # active time slots in node i 7 Z
4
%
/]

N

* y(i,j): #time slot job j placed in node i.) 7 7,9)

[OQ‘/ \2,3) %>
58

NN
NN G0
NN

 Constraints:

(Each job j must be scheduled.

For each job j, we can at most schedule x; in node i.

We have only g machines.

For all subtree, check if we have to open at least 1,2,3 time
. slot 18

Linear programming processing: enhance [p

For subtree 7', i € {1,2}:
Open all possible i time slot in each subtree I
Open all time slots outside of T
Check if we can schedule all jobs inside
If not, set up a constraint in the linear

programming:

open i+l timeslotinT

NN

We will try to
open 1 time slot
in the subtree
and open all
other time slot
outside the
subtree to check

the feasibility.

19

Outline

* Linear programming rounding algorithm

Linear programming: lp rounding

* If we round up all nodes, then we
will get 2-approximate ratio.

* Round up some fractional nodes
and round down some fractional
nodes.

Linear programming: Hardness

 We round down black node.

* Difficulty: there might be jobs
placed in [7, 9) in the linear
programming. However, we need
to move those jobs into other time
slot.

e Our enhanced constraint can
ensure those jobs can be
scheduled.

[0,10)
A V77
4,7
2

Linear programming: lp rounding

* Round up some fractional nodes.

 process from bottom to top, at any
node, we consider the subtree
rooted at this node. ___1o,

NN
NN

NN
NN
NN
N
AN
NN

Linear programming: Ip rounding example

* Blue node are integer time slot

node.
* For any subtree, if rounding up
doesn’t violates 1.8 approximate SN[1) -
) 2 V7
ratio respect to the subtree, we Zéﬁ /Zéé
choose a random node to round [0,3) 47

up.

Linear programming: Ip rounding example

* Blue node are integer time slot
node.

* For any subtree, if rounding up
doesn’t violates 1.8 approximate — ()
ratio respect to the subtree, we
choose a random node to round

up.

NN
NN
NN

N
NN

NN
NN

0,

Linear programming: Ip rounding example

* When we process the root node,
we round another red node up.

[0,10)
7

NN

4,7

Linear programming: Ip rounding example

* Round up green node
 Round down black node

[0,10)
o ?.ﬂ"’/ V ” ?ﬂ"
%77/8775%%
[0,3) 4,7 7,9)
7
0 23 \46)

31

Outline

* The feasibility of our method

Feasibility of the [p rounding scheme

What we have: Lp solution

* The Ip active time slot x 4)
* The Ip scheduling y @ b rounding > @
* The rounding active time slot X
We have to show @ @
* The existence of scheduling y

N /

Feasibility of the [p rounding scheme

\
@ |p rounding > °
[An if-and-only-if condition from X to y

& G

Lp solution

-

34

If-and-Only-If condition for feasibility

 Given a solution X

 Consider an arbitrary job subset J' c J,
for any node i in the tree, we can
schedule at most

min(|J' (Anc(D)1, g) - (i) W

job volume inside. [0,3) 4,7 7,9)

N
NN
N
NN

NN
NN

2
Jobs in)" which can be scheduled in node i I %

If-and-Only-If condition for feasibility

NN
NN
NN

N

NN

NN

* |n total, we can schedule at most Z

z min(J'(Anc(i)),) - (i) | I

[-and-Only-If condition for feasibility

W
NN

NN
NN
NN
N
AN
NN

* |n total, we can schedule at most / I

z min(J'(Anc(D)), g) - (i) =p(") | I Z

37

If-and-Only-If condition for feasibility

* For a job subset J', if
z min(J'(Anc(i)), g) - X(i)) =p(")

e Maximum flow minimum cut theorem

* The cut is at least
Y min(J'(Anc(@)), g) - (i)

* The maximum flow is at least p(J')

TO OO0 0
5580

%
"
/

g

|

Jobs

|

nodes

|

Feasibility of the [p rounding scheme

\
@ lp rounding > °
[Z max(]’(Anc(i)),g) X)) —p(J) =0

Lp solution

-

Feasibility

* We partition the subtrees into group
of size at most 3 such that one
rounding down node has two rounding

up nodes. — [090){ -
* We show the partition always exists. Zéé /ZZZ

> max(f'(4nc(),) - (i) — p(")

Nested Active-time problem: Summary

* There exists an 1.8 approximate algorithm for nested active time
problem.

Q&A

