
Nested Active-Time
Scheduling

1

Nairen Cao, Jeremy T. Fineman, Shi Li,
Julián Mestre, Katina Russell, Seeun William Umboh

ISSAC 2022

Example of active time problem: g = 2
• Job 1: window: [0,5); length 2
• Job 2: window: [0,3); length 2

2

Job 1Machine 1

Machine 2

Job 2 Job 1

Job 2 Job 3

t = 0 t = 1 t = 2 t = 3

• Job 3: window: [0,2); length 1
• Job 4: window: [3, 5); length 1

t = 4

Job 4

A feasible
scheduling

Job window Job 1
Job 2

Job 3 Job 4
t = 5

Active-time problem: definition

• Given 𝑔 > 0 machines.
• Given a set of jobs 𝐽, where each job 𝑗 ∈ 𝐽 has release time 𝑟! ,

deadline 𝑑!, and length 𝑝!. We call [𝑟! , 𝑑!) the job 𝑗’s window.
• Time is organized into discrete (integer) steps or slots, and

preemption is allowed but only at slot boundaries. A time slot is
active if there is a job scheduled inside.
• Target: find a schedule with minimum number of active steps that

schedule all jobs within their windows

3

Nested Active-time problem: definition

• The same as active time problem. In addition,
• For each pair job, either their windows are disjoint, or one is fully

contained in the other.

4

Example of active time problem: g = 2
• Job 1: window: [0,5); length 2
• Job 2: window: [0,3); length 2

5

Job 1Machine 1

Machine 2

Job 2 Job 1

Job 2 Job 3

t = 0 t = 1 t = 2 t = 3

• Job 3: window: [0,2); length 1
• Job 4: window: [3, 5); length 1

t = 4

Job 4

A feasible
scheduling

Job window Job 1
Job 2

Job 3 Job 4
t = 5

ç

Job window are nested

Related work

8

Paper result Method Remark

Chang, Gabow, and Khuller
2014

2-approximate Linear programming General case

Kumar and Khuller 2018 2-approximate Greedy algorithm General case
Călinescu and Wang 2021 2-approximate Linear programming General case

Sagnik and Manish 2021 NP complete General case

Related work

9

Paper result Method Remark

Chang, Gabow, and Khuller
2014

2-approximate Linear programming General case

Kumar and Khuller 2018 2-approximate Greedy algorithm General case
Călinescu and Wang 2021 2-approximate Linear programming General case

Sagnik and Manish 2021 NP complete General case

Our result NP complete Nested case

Our result 1.8 approximate Linear programming
rounding

Nested case

Outline

• Linear programming preprocessing
• Linear programming rounding algorithm
• The feasibility of our method

10

Linear programming: preprocessing

11

• Given an instance 𝑔, 𝐽 , we can
construct a tree based on the
job window and time slot.
• For node 𝑖 and its child node t,

we have K" ⊂ 𝐾#.

𝐾! = 𝑟! , 𝑑!

𝐾" = [𝑟" , 𝑑")

Job 1

Job 2 Job 3 Job 4

Job 5 Job 6 Job 7

Job 9
Job 8

Linear programming: preprocessing example

12

• Given an instance 𝑔, 𝐽 , we can
construct a tree based on the
job window and time slot.
• For node 𝑖 and its child node t,

we have K" ⊂ 𝐾#.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)
Job 1

Job 2 Job 3 Job 4

Job 5 Job 6 Job 7

Job 9
Job 8

Linear programming preprocessing: Why?

• Specify the ownership of a time slot
• Extra constraint for linear programming

13

Linear programming: preprocessing

14

• We don’t want to double count the
time slot, so we only consider a
time slot if it doesn’t appear in the
descendant node.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: variable

15

• We remvoe a time slot if it appears
in its descendant node.
• Variable:
• 𝑥(𝑖) be the number of active time

slots in node 𝑖 and
• 𝑦 𝑖, 𝑗 be the number of time slot job
𝑗 placed in node 𝑖.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: formulation

16

• Variable:
• 𝑥(𝑖): # active time slots in node 𝑖
• 𝑦 𝑖, 𝑗 : # time slot job 𝑗 placed in node 𝑖.

• Constraints:

(
1∈345(7(8))

𝑦 𝑖, 𝑗 ≥ 𝑝8, ∀𝑗 ∈ 𝐽

𝑦 𝑖, 𝑗 ≤ 𝑥1, ∀𝑖, 𝑗

(
8∈9(:;< 1)

𝑦 𝑖, 𝑗 ≤ 𝑔 ⋅ 𝑥1, ∀𝑖

Each job j must be scheduled.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)
For each job 𝑗, we can at most schedule 𝑥(𝑖) in node 𝑖.

We have only 𝑔 machines.

=
!

𝑦 𝑖, 𝑗 ≥ 𝑝#

𝑦 𝑖, 𝑗 ≤ 𝑥(𝑖)

=
#

𝑦 𝑖, 𝑗 ≤ 𝑔 ⋅ 𝑥(𝑖)

Linear programming: integer gap

17

Linear programming solution:
𝑔 + 1
𝑔

→ 1(𝑤ℎ𝑒𝑛 𝑔 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒)

[0,2)[0,2)

𝐽 = {1,2, … , 𝑔 + 1} with length 1

Optimal integer solution: 2

Linear programming processing: enhance lp

18

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

For all subtree, check if we have to open at least 1,2,3 time
slot

Each job j must be scheduled.

For each job 𝑗, we can at most schedule 𝑥1 in node 𝑖.

We have only 𝑔 machines.

(
1∈345(7(8))

𝑦 𝑖, 𝑗 ≥ 𝑝8, ∀𝑗 ∈ 𝐽

𝑦 𝑖, 𝑗 ≤ 𝑥1, ∀𝑖, 𝑗

(
8∈9(:;< 1)

𝑦 𝑖, 𝑗 ≤ 𝑔 ⋅ 𝑥1, ∀𝑖

• Variable:
• 𝑥(𝑖): # active time slots in node 𝑖
• 𝑦 𝑖, 𝑗 : # time slot job 𝑗 placed in node 𝑖.

• Constraints:

Linear programming processing: enhance lp

19

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

We will try to
open 1 time slot
in the subtree
and open all
other time slot
outside the
subtree to check
the feasibility.

For subtree 𝒯, 𝑖 ∈ {1,2}:
Open all possible i time slot in each subtree 𝒯
Open all time slots outside of 𝒯
Check if we can schedule all jobs inside
If not, set up a constraint in the linear

programming:
open i+1 time slot in 𝒯

Outline

• Linear programming preprocessing
• Linear programming rounding algorithm
• The feasibility of our method

24

Linear programming: lp rounding

25

• If we round up all nodes, then we
will get 2-approximate ratio.
• Round up some fractional nodes

and round down some fractional
nodes.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: Hardness

26

• We round down black node.
• Difficulty: there might be jobs

placed in [7, 9) in the linear
programming. However, we need
to move those jobs into other time
slot.
• Our enhanced constraint can

ensure those jobs can be
scheduled.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: lp rounding

27

• Round up some fractional nodes.
• process from bottom to top, at any

node, we consider the subtree
rooted at this node. 0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: lp rounding example

28

• Blue node are integer time slot
node.
• For any subtree, if rounding up

doesn’t violates 1.8 approximate
ratio respect to the subtree, we
choose a random node to round
up.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: lp rounding example

29

• Blue node are integer time slot
node.
• For any subtree, if rounding up

doesn’t violates 1.8 approximate
ratio respect to the subtree, we
choose a random node to round
up.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: lp rounding example

30

• When we process the root node,
we round another red node up.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Linear programming: lp rounding example

31

• Round up green node
• Round down black node

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Outline

• Linear programming preprocessing
• Linear programming rounding algorithm
• The feasibility of our method

32

Feasibility of the lp rounding scheme

33

𝑥

𝑦

D𝑥lp rounding

Lp solution

D𝑦?

What we have:
• The lp active time slot 𝑥
• The lp scheduling 𝑦
• The rounding active time slot D𝑥

We have to show
• The existence of scheduling D𝑦

Feasibility of the lp rounding scheme

34

𝑥

𝑦

D𝑥lp rounding

Lp solution

D𝑦

An if-and-only-if condition from 1𝑥 to 1𝑦

If-and-Only-If condition for feasibility

35

• Given a solution D𝑥
• Consider an arbitrary job subset 𝐽$ ⊂ 𝐽,

for any node 𝑖 in the tree, we can
schedule at most

m𝑖𝑛(|𝐽′(𝐴𝑛𝑐 𝑖)|, 𝑔) ⋅ D𝑥(𝑖)
job volume inside.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Jobs in J’ which can be scheduled in node i

If-and-Only-If condition for feasibility

36

• Given a solution D𝑥
• Consider an arbitrary job subset 𝐽$ ⊂ 𝐽,

for any node 𝑖 in the tree, we can
schedule at most

m𝑖𝑛(𝐽$ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
job inside.
• In total, we can schedule at most

Lm𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

If-and-Only-If condition for feasibility

37

• Given a solution D𝑥
• Consider an arbitrary job subset 𝐽$ ⊂ 𝐽,

for any node 𝑖 in the tree, we can
schedule at most

m𝑖𝑛(𝐽$ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
job inside.
• In total, we can schedule at most

Lm𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖) ≥ 𝑝(𝐽$)

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

If-and-Only-If condition for feasibility

38

• For a job subset 𝐽′, if

Lm𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖) ≥ 𝑝(𝐽$)

• Maximum flow minimum cut theorem
• The cut is at least

∑m𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
• The maximum flow is at least 𝑝(𝐽$)

s j
i

t
L𝑥(𝑖)

L𝑥(𝑖)

L𝑥(𝑖)

𝑔 ⋅ L𝑥(𝑖)p(𝑗)

Jobs nodes

Feasibility of the lp rounding scheme

39

𝑥

𝑦

D𝑥lp rounding

Lp solution

D𝑦

=max(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ L𝑥(𝑖) − 𝑝 𝐽$ ≥ 0

Feasibility

40

• We partition the subtrees into group
of size at most 3 such that one
rounding down node has two rounding
up nodes.
• We show the partition always exists.

Lmax(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖) − 𝑝(𝐽$)

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)

Nested Active-time problem: Summary

• There exists an 1.8 approximate algorithm for nested active time
problem.

42

Q & A

43

