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Example of active time problem: g = 2
• Job 1: window: [0,5); length 2
• Job 2: window: [0,3); length 2
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Active-time problem: definition  

• Given 𝑔 > 0 machines.
• Given a set of jobs 𝐽, where each job 𝑗 ∈ 𝐽 has release time 𝑟! , 

deadline 𝑑!, and length 𝑝!. We call [𝑟! , 𝑑!) the job 𝑗’s window. 
• Time is organized into discrete (integer) steps or slots, and 

preemption is allowed but only at slot boundaries. A time slot is
active if there is a job scheduled inside.
• Target: find a schedule with minimum number of active steps that 

schedule all jobs within their windows 
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Nested Active-time problem: definition

• The same as active time problem. In addition,
• For each pair job, either their windows are disjoint, or one is fully 

contained in the other. 
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Example of active time problem: g = 2
• Job 1: window: [0,5); length 2
• Job 2: window: [0,3); length 2
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Outline

• Linear programming preprocessing
• Linear programming rounding algorithm 
• The feasibility of our method 
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Linear programming: preprocessing
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• Given an instance 𝑔, 𝐽 , we can 
construct a tree based on the 
job window and time slot.
• For node 𝑖 and its child node t, 

we have K" ⊂ 𝐾#.

𝐾! = 𝑟! , 𝑑!

𝐾" = [𝑟" , 𝑑")
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Linear programming: preprocessing example
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• Given an instance 𝑔, 𝐽 , we can 
construct a tree based on the 
job window and time slot.
• For node 𝑖 and its child node t, 

we have K" ⊂ 𝐾#.
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Linear programming preprocessing: Why?

• Specify the ownership of a time slot
• Extra constraint for linear programming
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Linear programming: preprocessing
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• We don’t want to double count the 
time slot, so we only consider a 
time slot if it doesn’t appear in the 
descendant node.
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Linear programming: variable

15

• We remvoe a time slot if it appears 
in its descendant node. 
• Variable:
• 𝑥(𝑖) be the number of active time 

slots in node 𝑖 and
• 𝑦 𝑖, 𝑗 be the number of time slot job 
𝑗 placed in node 𝑖.
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Linear programming: formulation
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• Variable:
• 𝑥(𝑖): # active time slots in node 𝑖
• 𝑦 𝑖, 𝑗 : # time slot job 𝑗 placed in node 𝑖.

• Constraints:

(
1∈345(7(8))

𝑦 𝑖, 𝑗 ≥ 𝑝8, ∀𝑗 ∈ 𝐽

𝑦 𝑖, 𝑗 ≤ 𝑥1, ∀𝑖, 𝑗

(
8∈9(:;< 1 )

𝑦 𝑖, 𝑗 ≤ 𝑔 ⋅ 𝑥1, ∀𝑖

Each job j must be scheduled.
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[4,6)

[5,6)
For each job 𝑗, we can at most schedule 𝑥(𝑖) in node 𝑖.

We have only 𝑔 machines.

=
!

𝑦 𝑖, 𝑗 ≥ 𝑝#

𝑦 𝑖, 𝑗 ≤ 𝑥(𝑖)

=
#

𝑦 𝑖, 𝑗 ≤ 𝑔 ⋅ 𝑥(𝑖)



Linear programming: integer gap
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Linear programming solution: 
𝑔 + 1
𝑔

→ 1(𝑤ℎ𝑒𝑛 𝑔 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒)

[0,2)[0,2)

𝐽 = {1,2, … , 𝑔 + 1} with length 1

Optimal integer solution: 2



Linear programming processing: enhance lp
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For all subtree, check if we have to open at least 1,2,3 time 
slot

Each job j must be scheduled.

For each job 𝑗, we can at most schedule 𝑥1 in node 𝑖.

We have only 𝑔 machines.

(
1∈345(7(8))

𝑦 𝑖, 𝑗 ≥ 𝑝8, ∀𝑗 ∈ 𝐽

𝑦 𝑖, 𝑗 ≤ 𝑥1, ∀𝑖, 𝑗

(
8∈9(:;< 1 )

𝑦 𝑖, 𝑗 ≤ 𝑔 ⋅ 𝑥1, ∀𝑖

• Variable:
• 𝑥(𝑖): # active time slots in node 𝑖
• 𝑦 𝑖, 𝑗 : # time slot job 𝑗 placed in node 𝑖.

• Constraints:



Linear programming processing: enhance lp
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We will try to
open 1 time slot
in the subtree
and open all
other time slot
outside the
subtree to check 
the feasibility.

For subtree 𝒯, 𝑖 ∈ {1,2}: 
Open all possible i time slot in each subtree 𝒯
Open all time slots outside of 𝒯
Check if we can schedule all jobs inside
If not, set up a constraint in the linear 

programming:
open i+1 time slot in 𝒯



Outline

• Linear programming preprocessing
• Linear programming rounding algorithm 
• The feasibility of our method 
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Linear programming: lp rounding
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• If we round up all nodes, then we 
will get 2-approximate ratio.
• Round up some fractional nodes 

and round down some fractional 
nodes.
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Linear programming: Hardness
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• We round down black node.
• Difficulty: there might be jobs

placed in [7, 9) in the linear 
programming. However, we need
to move those jobs into other time
slot.
• Our enhanced constraint can 

ensure those jobs can be 
scheduled.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)



Linear programming: lp rounding
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• Round up some fractional nodes.
• process from bottom to top, at any 

node, we consider the subtree
rooted at this node. 0,10
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Linear programming: lp rounding example
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• Blue node are integer time slot
node.
• For any subtree, if rounding up 

doesn’t violates 1.8 approximate 
ratio respect to the subtree, we 
choose a random node to round 
up.

0,10

[0,3)

[0,2) [2,3)

[4,7) [7,9)

[4,6)

[5,6)



Linear programming: lp rounding example
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• Blue node are integer time slot
node.
• For any subtree, if rounding up 

doesn’t violates 1.8 approximate 
ratio respect to the subtree, we 
choose a random node to round 
up.
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Linear programming: lp rounding example
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• When we process the root node,
we round another red node up.
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Linear programming: lp rounding example
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• Round up green node
• Round down black node
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Outline

• Linear programming preprocessing
• Linear programming rounding algorithm 
• The feasibility of our method 
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Feasibility of the lp rounding scheme
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𝑥

𝑦

D𝑥lp rounding 

Lp solution 

D𝑦?

What we have:
• The lp active time slot 𝑥
• The lp scheduling 𝑦
• The rounding active time slot D𝑥

We have to show 
• The existence of scheduling D𝑦



Feasibility of the lp rounding scheme
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𝑥

𝑦

D𝑥lp rounding 

Lp solution 

D𝑦

An if-and-only-if condition from 1𝑥 to 1𝑦



If-and-Only-If condition for feasibility 
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• Given a solution D𝑥
• Consider an arbitrary job subset 𝐽$ ⊂ 𝐽, 

for any node 𝑖 in the tree, we can 
schedule at most 

m𝑖𝑛(|𝐽′(𝐴𝑛𝑐 𝑖 )|, 𝑔) ⋅ D𝑥(𝑖)
job volume inside.

0,10

[0,3)

[0,2) [2,3)
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[5,6)

Jobs in J’ which can be scheduled in node i



If-and-Only-If condition for feasibility 
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• Given a solution D𝑥
• Consider an arbitrary job subset 𝐽$ ⊂ 𝐽, 

for any node 𝑖 in the tree, we can 
schedule at most 

m𝑖𝑛(𝐽$ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
job inside.
• In total, we can schedule at most 

Lm𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
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If-and-Only-If condition for feasibility 
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• Given a solution D𝑥
• Consider an arbitrary job subset 𝐽$ ⊂ 𝐽, 

for any node 𝑖 in the tree, we can 
schedule at most 

m𝑖𝑛(𝐽$ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
job inside.
• In total, we can schedule at most 

Lm𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖) ≥ 𝑝(𝐽$)
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If-and-Only-If condition for feasibility 
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• For a job subset 𝐽′, if 

Lm𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖) ≥ 𝑝(𝐽$)

• Maximum flow minimum cut theorem
• The cut is at least   

∑m𝑖𝑛(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖)
• The maximum flow is at least 𝑝(𝐽$)

s j
i

t
L𝑥(𝑖)

L𝑥(𝑖)

L𝑥(𝑖)

𝑔 ⋅ L𝑥(𝑖)p(𝑗)

Jobs nodes



Feasibility of the lp rounding scheme
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𝑥

𝑦

D𝑥lp rounding 

Lp solution 

D𝑦

=max(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ L𝑥(𝑖) − 𝑝 𝐽$ ≥ 0



Feasibility 
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• We partition the subtrees into group 
of size at most 3 such that one 
rounding down node has two rounding 
up nodes. 
• We show the partition always exists.

Lmax(𝐽′ 𝐴𝑛𝑐 𝑖 , 𝑔) ⋅ D𝑥(𝑖) − 𝑝(𝐽$)

0,10
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[5,6)



Nested Active-time problem: Summary

• There exists an 1.8 approximate algorithm for nested active time 
problem.
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Q & A
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