Nested Active-Time Scheduling

Nairen Cao, Jeremy T. Fineman, Shi Li, Julián Mestre, Katina Russell, Seeun William Umboh ISSAC 2022

Example of active time problem: g = 2

- Job 1: window: [0,5); length 2
- Job 2: window: [0,3); length 2
- Job 3: window: [0,2); length 1
- Job 4: window: [3, 5); length 1

Active-time problem: definition

- Given g > 0 machines.
- Given a set of jobs J, where each job $j \in J$ has release time r_j , deadline d_j , and length p_j . We call $[r_j, d_j)$ the job j's window.
- Time is organized into discrete (integer) steps or slots, and preemption is allowed but only at slot boundaries. A time slot is active if there is a job scheduled inside.
- Target: find a schedule with minimum number of active steps that schedule all jobs within their windows

Nested Active-time problem: definition

- The same as active time problem. In addition,
- For each pair job, either their windows are disjoint, or one is fully contained in the other.

Example of active time problem: g = 2

- Job 1: window: [0,5); length 2
- Job 2: window: [0,3); length 2

•

Job 3: window: [0,2); length 1

Job 4: window: [3, 5); length 1

Related work

Paper	result	Method	Remark
Chang, Gabow, and Khuller 2014	2-approximate	Linear programming	General case
Kumar and Khuller 2018	2-approximate	Greedy algorithm	General case
Călinescu and Wang 2021	2-approximate	Linear programming	General case
Sagnik and Manish 2021	NP complete		General case

Related work

Paper	result	Method	Remark
Chang, Gabow, and Khuller 2014	2-approximate	Linear programming	General case
Kumar and Khuller 2018	2-approximate	Greedy algorithm	General case
Călinescu and Wang 2021	2-approximate	Linear programming	General case
Sagnik and Manish 2021	NP complete		General case
Our result	NP complete		Nested case
Our result	1.8 approximate	Linear programming rounding	Nested case

Outline

- Linear programming preprocessing
- Linear programming rounding algorithm
- The feasibility of our method

Linear programming: preprocessing

- Given an instance (g, J), we can construct a tree based on the job window and time slot.
- For node *i* and its child node t, we have $K_t \subset K_i$.

Linear programming: preprocessing example

• Given an instance (g, J), we can construct a tree based on the job window and time slot.

Linear programming preprocessing: Why?

- Specify the ownership of a time slot
- Extra constraint for linear programming

Linear programming: preprocessing

• We don't want to double count the time slot, so we only consider a time slot if it doesn't appear in the descendant node.

Linear programming: variable

- We remvoe a time slot if it appears in its descendant node.
- Variable:
 - x(i) be the number of active time slots in node i and
 - y(i, j) be the number of time slot job *j* placed in node *i*.

Linear programming: formulation

• Variable:

- x(i): # active time slots in node i
- y(i,j): # time slot job j placed in node i.
- Constraints:
 - Each job j must be scheduled.

$$\sum_{i} y(i,j) \ge p_j$$

For each job j, we can at most schedule x(i) in node i.

 $y(i,j) \leq x(i)$

We have only g machines.

$$\sum_{j} y(i,j) \le g \cdot x(i)$$

Linear programming: integer gap

 $J = \{1, 2, ..., g + 1\}$ with length 1 [0,2) [0,2) Linear programming solution: **Optimal integer solution: 2** $\frac{g+1}{2} \rightarrow 1$ (when g is large) g

Linear programming processing: enhance lp

- Variable:
 - x(i): # active time slots in node i
 - y(i,j): # time slot job j placed in node i.
- Constraints:

Each job j must be scheduled.

For each job j, we can at most schedule x_i in node i.

We have only g machines.

For all subtree, check if we have to open at least 1,2,3 time slot

Linear programming processing: enhance lp

For subtree \mathcal{T} , $i \in \{1,2\}$: Open all possible i time slot in each subtree \mathcal{T} Open all time slots outside of \mathcal{T} Check if we can schedule all jobs inside If not, set up a constraint in the linear programming: open i+1 time slot in \mathcal{T}

We will try to open 1 time slot in the subtree and open all other time slot outside the subtree to check the feasibility.

Outline

- Linear programming preprocessing
- Linear programming rounding algorithm
- The feasibility of our method

Linear programming: lp rounding

- If we round up all nodes, then we will get 2-approximate ratio.
- Round up some fractional nodes and round down some fractional nodes.

Linear programming: Hardness

- We round down black node.
- Difficulty: there might be jobs placed in [7, 9) in the linear programming. However, we need to move those jobs into other time slot.
- Our enhanced constraint can ensure those jobs can be scheduled.

Linear programming: lp rounding

- Round up some fractional nodes.
- process from bottom to top, at any node, we consider the subtree rooted at this node.

- Blue node are integer time slot node.
- For any subtree, if rounding up doesn't violates 1.8 approximate ratio respect to the subtree, we choose a random node to round up.

- Blue node are integer time slot node.
- For any subtree, if rounding up doesn't violates 1.8 approximate ratio respect to the subtree, we choose a random node to round up.

• When we process the root node, we round another red node up.

- Round up green node
- Round down black node

Outline

- Linear programming preprocessing
- Linear programming rounding algorithm
- The feasibility of our method

Feasibility of the lp rounding scheme

What we have:

- The lp active time slot *x*
- The lp scheduling y
- The rounding active time slot \tilde{x}

We have to show

- The existence of scheduling \tilde{y}

Feasibility of the lp rounding scheme

- Given a solution \tilde{x}
- Consider an arbitrary job subset J' ⊂ J, for any node i in the tree, we can schedule at most min(|J'(Anc(i))|, g) · x̃(i) job volume inside.

Jobs in J' which can be scheduled in node i

• Given a solution \widetilde{x}

Consider an arbitrary job subset J' ⊂ J, for any node i in the tree, we can schedule at most min(J'(Anc(i)), g) · x̃(i)

job inside

• In total, we can schedule at most $\sum \min(J'(Anc(i)), g) \cdot \tilde{x}(i)$

• Given a solution \widetilde{x}

Consider an arbitrary job subset J' ⊂ J, for any node i in the tree, we can schedule at most min(J'(Anc(i)), g) · x̃(i)

job inside.

• In total, we can schedule at most $\sum \min(J'(Anc(i)), g) \cdot \tilde{x}(i) \ge p(J')$

- For a job subset J', if $\sum \min(J'(Anc(i)), g) \cdot \tilde{x}(i) \ge p(J')$
- Maximum flow minimum cut theorem
- The cut is at least $\sum \min(J'(Anc(i)), g) \cdot \tilde{x}(i)$
- The maximum flow is at least p(J')

Feasibility of the lp rounding scheme

Feasibility

- We partition the subtrees into group of size at most 3 such that one rounding down node has two rounding up nodes.
- We show the partition always exists. $\sum \max(J'(Anc(i)), g) \cdot \tilde{x}(i) - p(J')$

Nested Active-time problem: Summary

• There exists an 1.8 approximate algorithm for nested active time problem.

Q & A