Brief Announcement: An Improved Distributed Approximate SingleSource Shortest Paths Algorithm

Nairen Cao, Jeremy T. Fineman and Katina Russell Georgetown University

The CONGEST model

- Processors with unique IDs are modeled as n nodes.
- Synchronous rounds (global clock)
- In each round, every node sends (at most) one message with size $\mathrm{O}(\log \mathrm{n})$ to each neighbor.
- At the end of the algorithm, every node has to compute some information.
- Complexity Measure: number of rounds

The approximate single source shortest path problem

- Given graph G and a source node s, compute the ($1+\epsilon$)approximate shortest path distance from s to all other nodes.
- Problem: Compute $\widehat{\operatorname{dist}}_{G}(s, v)$ such that $\operatorname{dist}_{G}(s, v) \leq \widehat{\operatorname{dist}}_{G}(s, v) \leq$ $(1+\epsilon) \cdot \operatorname{dist}_{G}(s, v)$, where $\operatorname{dist}_{G}(s, v)$ is the shortest path distance from s to v .
- The graph G is directed and the edge weight is non-negative real number.

The approximate single source shortest path(ASSSP) problem in the CONGEST model

- The nodes of the graph G are processors in the CONGEST model.
- The graph G is directed, but messages can be sent in both directions.
- D is the diameter of the undirected graph. Sending one message from one node to another takes O (D) rounds.

Related work

Algorithms	rounds	Remark
Peleg and Rubinovic 2000	$\widetilde{\Omega}(\sqrt{n}+D)$	Lower bound for directed and undirected approximate SSSP
Nanongkai 2014 Forster and Nanongkai 2016	$\tilde{O}\left(\left(\sqrt{n} D^{\frac{1}{4}}+D\right) \lg W / \epsilon\right)$	directed approximate SSSP
Chechik and Mukhtar 2020	$\tilde{O}\left(\sqrt{n} D^{\frac{1}{4}} \lg ^{2} W\right)$	directed exact SSSP(integer weight)
This paper	$\tilde{O}((\sqrt{n}+D$ $\left.\left.+n^{\frac{2}{5}+o(1)} D^{\frac{2}{5}}\right) \lg W / \epsilon^{2}\right)$	directed approximate SSSP

[^0]
Related work --- some parameter

- If W is polynomial bounded and ϵ is constant, then previous best result is $\tilde{O}\left(\sqrt{n} D^{\frac{1}{4}}+D\right)$, and our result is $\tilde{O}\left(\sqrt{n}+D+n^{\frac{2}{5}+o(1)} D^{\frac{2}{5}}\right)$.
- $D=o\left(n^{1 / 4}\right)$, then $\tilde{O}\left(\sqrt{n} D^{\frac{1}{4}}\right) \rightarrow \tilde{O}(\sqrt{n})$
- $D=O\left(n^{\frac{2}{3}}\right)$, for example, $D=\theta(\sqrt{n}), \tilde{O}\left(n^{0.625}\right) \rightarrow \tilde{O}\left(n^{0.6+o(1)}\right)$.

The skeleton graph approximate SSSP

- Given skeleton graph G_{s}, which contains $\tilde{O}(\alpha)$ nodes, each node of G_{s} knows its incoming and outgoing edges.
- G_{s} is a virtual directed graph over some nodes.

The skeleton graph approximate SSSP

- Given skeleton graph G_{s}, which contains. $\tilde{O}(\alpha)$ nodes, each node of G_{S} knows its incoming and outgoing edges.
- G_{s} is a virtual directed graph over some nodes. How we construct G_{s} doesn't matter.
- Solving ASSSP over skeleton graph \Rightarrow Solving ASSSP over whole graph[Forster and
 Nanongkai 2016]

Improve the skeleton graph approximate SSSP

- Solving approximate SSSP over skeleton graph[Forster and Nanongkai 2016]

$$
\tilde{O}\left(\alpha \rho+\frac{D \alpha}{\rho}\right) \rightarrow \tilde{O}\left(\alpha \rho^{2}+\frac{D \sqrt{\alpha}}{\rho}\right)
$$

- Difficulty: no communication link between any edge of the skeleton graph.

$\tilde{O}(\alpha)$ nodes.

Key observation for the skeleton graph ASSSP

- Since we only care about the approximate SSSP, we could round up each edge to small integer value and thus the edge weight could be treated as 1. [KS97]
- If from s to all other nodes, the approximate shortest path contains at most k edges, then simulating BFS is enough. Each level takes
 $O(D)$ rounds and in total takes $O(D k+\alpha)$.

Algorithm Idea for the skeletongraph ASSSP

- The idea is to add more edges to the graph until k is small.
- CFR2020 could do in parallel model, we adapt it to distributed model.
- Jambulapati, Liu, and Sidford 2019 showed a similar transformation, but their algorithm is for reachability problem and our algorithm gets better running time.

New skeleton graph: k becomes smaller.

Conclusion

- Combine the framework of Forster, Nanongkai 2016 and parallel shortest path algorithm CFR2020
- An algorithm for distributed approximate single shortest paths problem

[^0]: $n=$ number of nodes, $m=$ number of edges, $\mathrm{D}=$
 diameter, W =heaviest edge weight/lightest edge weight

