
Brief Announcement: Improved Work Span Tradeoff for Single
Source Reachability and Approximate Shortest Paths

Nairen Cao

nairen@ir.cs.georgetown.edu

Georgetown University

Washington D.C., USA

Jeremy T. Fineman

jfineman@cs.georgetown.edu

Georgetown University

Washington D.C., USA

Katina Russell

katina.russell@.cs.georgetown.edu

Georgetown University

Washington D.C., USA

ABSTRACT
This brief announcement presents parallel algorithms with a trade-

off between work and span for single source reachability and ap-

proximate shortest paths on directed graphs. Both algorithms have

Õ(mρ2+nρ4)work and achieve n1/2+o(1)/ρ span for all ρ ∈ [1,
√
n].

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Shortest paths; Parallel algorithms.

KEYWORDS
Parallel algorithm; shortest paths; reachability; shortcuts.

ACM Reference Format:
Nairen Cao, Jeremy T. Fineman, and Katina Russell. 2020. Brief Announce-

ment: Improved Work Span Tradeoff for Single Source Reachability and

Approximate Shortest Paths. In Proceedings of the 32nd ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA ’20), July 15–17, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3350755.3400222

1 INTRODUCTION
Given a directed graph and designated source vertex s , the single-
source reachability problem is that of identifying the set of vertices

reachable from s . Given a directed graph with nonnegative edge

weights and source vertex s , the single-source shortest paths prob-
lem is that of finding the shortest-path distances d(s,v) from s to
all other vertices v . These problems are easily solvable in linear or

nearly linear time by sequential algorithms, but they are notoriously

difficult to solve efficiently in parallel.

Fineman [2] gave the first parallel algorithm for single-source

reachability on directed graphs with nearly linear work and sublin-

ear span
1
. Specifically, his algorithm has Õ(m) work and Õ(n2/3)

span, where n and m denote the number of vertices and edges,

respectively, in the input graph and Õ hides logarithmic factors.

1
The span of a parallel algorithm is the length of the longest chain of sequential

dependencies.

This work was supported in part by NSF grants CCF-1718700 and CCF-1918989.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400222

Jambulapati et al. (JLS) [3] improved upon this result, also achiev-

ing nearly linear work but improving the span to n1/2+o(1). More

recently, Cao et al. (CFR) [1] extended the JLS algorithm to solve

(1 + ϵ)-approximate single-source shortest paths, where the dis-

tance estimates
ˆd(s,v) returned by the algorithm satisfy d(s,v) ≤

ˆd(s,v) ≤ (1+ ϵ)d(s,v). Though it would be ideal to reduce the span

of these algorithms further without sacrificing the work bound,
√
n span seems to be an inherent bottleneck in Fineman’s general

approach, at least when limited to Õ(m) work. But what if the work
bound is relaxed? What are the best work-span tradeoffs that we

can achieve? This brief announcements argues that CFR [1] can be

tuned to achieve a work-span tradeoff. In particular, for any choice

of parameter ρ ∈ [1,
√
n], the algorithm has Õ(mρ2 + nρ4) work

and n1/2+o(1)/ρ span.

The idea of studying work-span tradeoffs for these problems

in general is not new. The contribution of this work is that the

algorithm achieves polynomially better tradeoffs than previous

algorithms when the work bound is kept relatively low (e.g., ρ <

1/8) and the graph is not too dense (e.g.,m < n7/4).

Previous work. The two previously best work-span tradeoffs for

single-source reachability are the following. Ullman and Yannakakis

(UY) [6] provide an algorithm with Õ(mρ + ρ4/n) work and (n/ρ)
span, for any ρ ∈ [1,n]. Spencer’s algorithm [5] runs in Õ(m +nρ2)
work and Õ(n/ρ) span, for any ρ ∈ [1,n]. Both algorithm also solve

unweighted single-source shortest paths (exactly), and Spencer’s

algorithm solves the weighted version. Klein and Subramanian [4]

extended UY to solve exact shortest paths for integer-weighted

graphs, but they do so only for the specific setting of ρ =
√
n.

Results. The main result of this work is the captured by the

following theorem.

Theorem 1.1. For all ρ ∈ [1,
√
n], there exists a randomized paral-

lel algorithm that solves single-source reachability in Õ(mρ2 + nρ4)

work and n1/2+o(1)/ρ span, with high probability, where n and m
denote the number of vertices and edges in the graph, respectively.

The algorithm also extends to solve single-source approximate

shortest paths with the same performance bounds.

For ρ = 1, the algorithm is identical to JLS (for single-source

reachability) or CFR (for approximate shortest paths) and has work

Õ(m) and span n1/2+o(1).
The main advantage of our result relative to UY or Spencer’s

is that the baseline span (for ρ = 1) is n1/2+o(1), whereas theirs is
Õ(n). Let us first compare our result with UY by calculating the

work necessary to achieve a span of Õ(n1/2−ϵ) for any constant

0 ≤ ϵ < 1/2. For this target span, UY has Õ(mn1/2+ϵ +n1+4ϵ) work,

whereas ours hasmn2ϵ+o(1) + n1+4ϵ+o(1). In general, these bounds

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

511

https://doi.org/10.1145/3350755.3400222
https://doi.org/10.1145/3350755.3400222
https://doi.org/10.1145/3350755.3400222

are incomparable, but ours is polynomially better if mn1/2+ϵ is

polynomially larger thann1+4ϵ . This condition always holds for ϵ <
1/6, and it also holds for larger ϵ as long as the graph has sufficient

density. Let us next compare with Spencer’s algorithm, which has

work Õ(n2+2ϵ) to achieve Õ(n1/2−ϵ) span. Our work bound again

represents a polynomial improvement as long as m ≤ n2−α for

constant α > 0. Whenm = Θ(n) in particular, our algorithm has

work n1+4ϵ+o(1) compared to Spencer’s Õ(n2+2ϵ).
The main disadvantage of our algorithm compared to the oth-

ers is that our algorithm can only compute approximate shortest

paths, whereas UY can compute exact shortest paths for unweighted

graphs, and Spencer’s algorithm can compute exact shortest paths

for weighted graphs.

Outline of the paper. This brief announcement focuses on the

simpler single-source reachability problem, but since we are ex-

tending CFR [1] the result readily extends to approximate shortest

paths. The key component of prior work [1–3] is an algorithm

that finds a set of “shortcut” edges that, when added to the graph,

reduce the directed diameter of the graph. Given a graph with di-

ameter D, reachability can be solved in Õ(m) work and Õ(D) span
using parallel BFS. (See e.g., [2] for more discussion.) Fineman’s

main contribution [2] was the first efficient sequential algorithm for

shortcutting, and he also showed how to parallelize the algorithm.

The main focus of this brief announcement (Section 3) a sequential

algorithm for shortcutting with a tradeoff between diameter and

running time, achieving diameter n1/2+o(1)/ρ in time Õ(mρ2). The
algorithm is a natural simplification of CFR [1] for reachability;

the main contribution is the observation that the tradeoff can be

achieved. Section 5 briefly discusses the parallelization.

2 PRELIMINARIES
For a weighted directed graph G = (V , E), the number of vertices

is n = |V | and the number of edges ism = |E |. For any subset of

vertices V ′ ⊂ V , the induced subgraph on V ′ is denoted G[V ′]. For
two nodesu,v , define the relationv ⪯ u if and only if there is a path

from v to u. Denote R+(G,v) = {u |v ⪯ u} to be the set of nodes

that are reachable from v in G. Similarly, R−(G,v) = {u |u ⪯ v}
denotes the set of nodes that can reach v in G. This notation is

adopted from Fineman [2] and CFR [1].

3 ALGORITHM
In this section we show a sequential algorithm for adding shortcuts

to a directed unweighted graph with a diameter-runtime tradeoff.

This algorithm is based on CFR [1], which in turn builds off JLS [3].

Now we will describe the main algorithm SC(G). The algorithm
takes a directed unweighted graph as input and outputs a set of

edges that when added to G reduce the diameter of G. In the al-

gorithm, vertices have two roles, pivots and shortcutters. Short-

cutters will search and add shortcuts, while pivots will search to

partition the graph for recursion. How SC(G) assigns these roles
will be explained later. SC(G) repeats assigning roles to vertices,

and calling the recursive subroutine, shown in Algorithm 1, SCRe-

curse(G, r = 0) λ logn times to increase the probability of success,

where the parameter λ > 8 is a constant. SCRecurse(G, r = 0)

runs as follows. Each pivot v searches forwards and backwards

adding vDes and vAnc labels to any vertices it reaches forwards

and backwards respectively. Any vertex that is reached in both

directions by v , is given the label X . Next any vertex with label

X is removed, and the graph is partitioned such that vertices u
and v are in the same group Vi if and only if u and v received the

identical set of labels from all the pivots. Next, each shortcutter

searches forwards and backwards and adds shortcuts to the vertices

it reaches. Finally, SCRecurse(G, r = 0) recurses on each group Vi
with level of recursion r + 1. The shortcuts added throughout the

entire execution are returned to the main algorithm as output.

The shortcutter and pivot roles are assigned as follows. Each

vertex v is assigned level ℓ(v) = i with probability λki+1 logn/n,
for i ∈ [0, logk n]. If multiple settings are successful, the minimum

level is taken. In a level of recursion r , each vertex u where ℓ(u) = r
is a pivot, and each vertex v where ℓ(v) ≤ r + L is a shortcutter.

Algorithm 1 Recursive subroutine for shortcut algorithm. The

input is a directed, unweighted graphG , level of recursion r . There
is an assignment of levels ℓ(v) to vertices v . L and k are parameters.

1: function SCRecurse(G, r)
2: for each v ∈ V with ℓ(v) = r
3: for each u ∈ R+(G,v) add label vDes to u

4: for each u ∈ R−(G,v) add label vAnc to u

5: for each u ∈ R+(G,v) ∩ R−(G,v) add label X to u

6: for each v ∈ V with ℓ(v) ≤ r + L
7: for each u ∈ R+(G,v) add edge (v,u) to H

8: for each u ∈ R−(G,v) add edge (u,v) to H

9: for each u ∈ V that has a X label, remove u

10: V1,V2, ...,Vt ← partition based on labels

11: for each i ∈ [1, t]
12: H ← H ∪ SCRecurse(G[Vi], r + 1)

13: return H

4 ANALYSIS SKETCH
Our goal is to show that the sequential algorithm in Section 3

exhibits a tradeoff between the work and the diameter. We use ρ as

a tradeoff parameter. Recall that L is a parameter of the algorithm

that determines how many shortcutters are oversampled. A larger

L will result in more work but a smaller diameter. We set L =
max{0, 2 logk ρ − 1} to achieve the desired tradeoff. The following

Theorem and its proof come from CFR [1] Theorem 1.

Theorem 4.1. There exists a randomized algorithm for producing

shortcuts for unweighted directed graphs that has runtimeO(mρ2 log3 n)
and when the shortcuts are added to the graph reduces the diameter to

at most n1/2+O (1/log logn)/ρ with probability 1−n2−λ , where n = |V |,
m = |E |, and ρ ∈ [1,

√
n] is a tradeoff parameter.

The algorithm is a simplified version of CFR [1]. From Theorem

2 in CFR, we have the following Lemma about the running time of

the recursive subroutine. The subsequent Corollary follows from

Lemma 4.2, the number of executions of SC(G) and the setting of L.

Lemma 4.2. One execution of SCRecurse(G, r) with parameters

L and k , where n = |V |,m = |E |, runs in O(mkL+1 log2 n) time and

adds O(nkL+1 log2 n) shortcuts to the graph.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

512

Corollary 4.3. One execution of SC(G) runs in O(mρ2 log3 n)
time and adds O(nρ2 log3 n) shortcuts to the graph.

Next we will sketch the diameter argument. The high level idea

is the same as the previous papers [1–3]. The analysis considers a

path where the length is greater than the desired diameter. The goal

is to show by the end of the execution of the algorithm the path has

been shortcutted to be at most n1/2+O (1/logk)k log2 n/ρ . A good

shortcutter would be one that is reachable from the beginning of

the path and reaches the end of the path. That way it adds edges to

the graph that shortcuts the path to two hops. In the beginning it

may not be likely to get a good shortcutter, however the previous

papers have shown as the algorithm recurses the probability of

getting a good shortcutter increases [1–3]. The problem is that

the path is split into subpaths with each level of recursion. CFR

showed that after r levels of recursion, a path will be split to at

mostO((2k)(r+1)/2 logn) subproblems. Our new observation is that

we can oversample the number of shortcutters, which increases

the likelihood of getting a good shortcutter. Oversampling also

means that the recursion can be stopped earlier. After r −L levels of

recursion, every vertex has either been removed or is a shortcutter,

and so each subpath has been shortcutted to two hops. Since r
is at most logk n, and L = max{0, 2 logk ρ − 1}, the diameter is

at most O((2k)(r+1−L)/2 logn) = n1/2+O (1/logk)k log2 n/ρ. We will

use k = Θ(logn). The following Lemma is similar to Lemma 12

from CFR [1], and the proof is essentially the same.

Lemma 4.4. Consider any graph G ′ = (V , E) and an execution of

SC(G ′) with parameter λ. With probability 1 − n−λ+2, the diameter

produced is n1/2+O (1/logk)k log2 n/ρ .

5 PARALLEL ALGORITHM
As in previous work [1–3], the main idea of the parallel algorithm

is to limit the searches to some distanceO(β) (corresponding to the
span of the algorithm). One of the issues with limited searches is

that it is no longer possible to shortcut a long path, but instead the

algorithm only shortens subpaths of length O(β) down to β . The
algorithm must therefore be iterated a polylogarithmic number of

times, adding more shortcuts to the graph on each iteration. The

extra shortcuts also increase the work of the algorithm, but not

by too much, as stated by the following lemma. In particular, the

number of edges increases to m′ = Õ(m + nρ2), which impacts

the work in all subsequent iterations. The following Lemma is a

restatement of CFR [1] Theorem 18.

Lemma 5.1. For a directed unweighted graphG , the parallel short-
cut algorithm doesO(mρ2 log4 n +nρ4 log8 n) work, and the number

of shortcuts added is O(nρ2 log4 n).

REFERENCES
[1] Nairen Cao, Jeremy T. Fineman, and Katina Russell. 2019. Efficient Construction of

Directed Hopsets and Parallel Approximate Shortest Paths. arXiv:cs.DS/1912.05506

[2] Jeremy T. Fineman. 2018. Nearly Work-Efficient Parallel Algorithm for Digraph

Reachability. In Proceedings of the 50th Annual ACM SIGACT Symposium on the

Theory of Computation. 457–470.

[3] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. 2019. Parallel Reachability in

Almost Linear Work and Square Root Depth. In 60th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November

9-12, 2019, David Zuckerman (Ed.). IEEE Computer Society, 1664–1686. https:

//doi.org/10.1109/FOCS.2019.00098

[4] Philip N Klein and Sairam Subramanian. 1997. A Randomized Parallel Algorithm

for Single-Source Shortest Paths. J. Algorithms 25, 2 (Nov. 1997), 205–220. https:

//doi.org/10.1006/jagm.1997.0888

[5] Thomas H. Spencer. 1997. Time-work Tradeoffs for Parallel Algorithms. J. ACM

44, 5 (Sept. 1997), 742–778. https://doi.org/10.1145/265910.265923

[6] Jeffrey D. Ullman and Mihalis Yannakakis. 1991. High Probability Parallel

Transitive-closure Algorithms. SIAM J. Comput. 20, 1 (Feb. 1991), 100–125.

https://doi.org/10.1137/0220006

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

513

http://arxiv.org/abs/cs.DS/1912.05506
https://doi.org/10.1109/FOCS.2019.00098
https://doi.org/10.1109/FOCS.2019.00098
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1145/265910.265923
https://doi.org/10.1137/0220006

	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Analysis Sketch
	5 Parallel Algorithm
	References

