
I/O-Efficient Algorithms for Topological Sort and Related Problems

Nairen Cao∗ Jeremy T. Fineman† Katina Russell‡ Eugene Yang§

Abstract

This paper presents I/O-efficient algorithms for topolog-
ically sorting a directed acyclic graph and for the more
general problem identifying and topologically sorting
the strongly connected components of a directed graph
G = (V,E). Both algorithms are randomized and have
I/O-costs O(sort(E) · poly(log V)), with high probabil-
ity, where sort(E) = O(EB logM/B(E/B)) is the I/O cost
of sorting an |E|-element array on a machine with size-
B blocks and size-M cache/internal memory. These are
the first algorithms for these problems that do not incur
at least one I/O per vertex, and as such these are the
first I/O-efficient algorithms for sparse graphs. By ap-
plying the technique of time-forward processing, these
algorithms also imply I/O-efficient algorithms for most
problems on directed acyclic graphs, such as shortest
paths, as well as the single-source reachability problem
on arbitrary directed graphs.

1 Introduction

Ullman and Yannakakis [25] and Chiang et al. [10]
initiated the study of graph algorithms in the I/O
model [2] over 20 years ago. Despite decades of research
and many efficient algorithms for undirected graphs,
there are essentially no I/O-efficient algorithms known
for even the most basic problems on sparse directed
graphs. Perhaps the most coveted is an algorithm for
topologically sorting a directed acyclic graph (DAG). A
topological sort of a DAG G = (V,E) is an ordering
of the vertices such that for every edge (u, v) ∈ E, u
precedes v in the ordering.

This paper presents the first algorithm for topo-
logically sorting a DAG that is I/O-efficient even for
sparse graphs. Not only is topologically sorting a fun-
damental problem on DAGs, but it is also a key subrou-
tine in another general I/O-efficient technique known
as time-forward processing [4, 10]. Due to the lack of
a good general-purpose algorithm for topological sort,
time-forward processing has only generated provably

∗nc645@georgetown.edu, Georgetown University
†jfineman@cs.georgetown.edu, Georgetown University and

University of Sydney
‡katina.russell@cs.georgetown.edu, Georgetown University
§eugene@ir.cs.georgetown.edu, Georgetown University

good results for restricted graph classes such as planar
graphs [7, 17,19].

1.1 The I/O Model and Common Subroutines.
The I/O model [2], also called the external-memory
model or disk-access-machine model, is a standard the-
oretical model for understanding the performance of al-
gorithms on large data sets by capturing some notion
of locality. The I/O model [2] is a two-level memory
hierarchy comprising a size-M cache (also called in-
ternal memory) and an external memory of unbounded
size. All data, both in cache and in external memory, is
organized in size-B chunks called blocks, so the cache
consists of M/B ≥ 1 blocks. Computation may only
occur on data residing in the cache, meaning that data
must be transferred from the external memory to cache
when needed. These data transfers are performed at
the granularity of blocks; each block transfer is called
an I/O. The cost of an algorithm in the I/O model,
often called the I/O cost, is the number of I/Os per-
formed. Computation itself is free.

The following are common examples of bounds in
the I/O model. Iterating over a size-N array in order
(assuming N > M) has I/O cost scan(N) = Θ(N/B).
Sorting [2] a size-N array has I/O cost sort(N) =
Θ(NB logM/B(N/B)). A key separation between the
RAM model and the I/O model is the difference in cost
between models for permuting. In the RAM model,
permuting an array is as cheap as scanning. In the
I/O model, for most settings of machine parameters
permuting is generally as expensive as sorting. Specifi-
cally, permuting has I/O cost Θ(min {N, sort(N)}) [2],
which for typical values resolves to the sort bound. (The
N term corresponds to foregoing an I/O-efficient algo-
rithm entirely — simply run the RAM algorithm and
pay an I/O for every operation.) The cost of sort-
ing thus often serves as a lower bound on the I/O
cost for problems that can be solved in linear time
in the RAM model. Many basic graph problems on
sparse graphs (directed or undirected), including topo-
logical sort, have Ω(sort(V)) lower bounds in the I/O
model [10].

Topological sort. There are two classic linear-
time algorithms for topological sort in the RAM model,
either repeatedly peeling off the vertices with in-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2053

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

degree 0, or performing a depth-first search and out-
putting the vertices in reverse order of finish time [14].
The best I/O algorithms known are based on the depth-
first search approach, for which there are two algo-
rithms. Neither is efficient for sparse graphs. Chi-
ang et al. [10] provide an algorithm with I/O cost
O(V + sort(E) + V E

MB), and Buchsbaum et al. [9] give

an algorithm with I/O cost O((V + E
B) log(V/B)). Both

of these bounds include at least a cost of V , indicating
that the algorithm may have to perform a random ac-
cess or I/O for each vertex. For sparse graphs, notably
|E| = Θ(V), both of these algorithms are worse than
simply running an ordinary RAM DFS and paying an
I/O for every operation.

Time-forward processing. Time-forward pro-
cessing, originally described by Chiang et al. [10], is a
technique that allows for efficient evaluation of circuit-
like problems on DAGs. Each vertex (or edge) starts
with some value w(v) or w(u, v). The goal is to
compute some label L(v) on each vertex, where L(v)
depends only on the initial values w and the labels
{L(u)|(u, v) ∈ E} on v’s immediate predecessors. If
the graph is topologically sorted, and certain technical
restrictions are met on the function being computed,
then the DAG circuit evaluation can be performed in
O(sort(E)) I/Os by time-forward processing [4,10]. The
first solution [10] has additional restrictions on the rel-
ative size of the cache, but Arge’s [4] solution removes
those restrictions by solving the problem with an I/O-
efficient priority queue called a Buffer Tree.

One challenging aspect about graph problems in
the I/O model is that vertices cannot generally be
processed one by one without sacrificing I/O efficiency.
Instead, vertices must be processed (roughly speaking)
in parallel by applying various sort and scan steps.
Time-forward processing is useful in part because it
simulates the effect of processing vertices one by one.
Thus, information can propagate arbitrarily far in the
graph, provided that the graph is topologically sorted.

1.2 Results. This paper gives the following results,
all having I/O cost O(sort(E) · log5 V), with high
probability, on a graph G = (V,E). For conciseness,
we assume throughout that |E| = Ω(V).

• (Sections 3 and 4.) A randomized algorithm for
topologically sorting a DAG.

• (Section 5.) A randomized algorithm for identi-
fying and topologically sorting the strongly con-
nected components (SCCs). Although this result
subsumes topologically sorting a DAG, the algo-
rithm includes additional complications and is thus
presented separately.

• Using the topological sort algorithm coupled with
time forward processing [4,10] yields efficient solu-
tions to other problems on DAGs, such as shortest
paths, with the same I/O cost.

• Again applying time-forward processing [4,10], the
SCC algorithm implies a solution to the single-
source reachability problem on directed graphs.
Specifically, given a directed graph (not necessarily
acyclic) and source vertex s, the set of vertices
reachable from s can be be identified in O(sort(E) ·
log5 V) I/Os, with high probability.

1.3 Overview of the Approach. The general ap-
proach adopted here for a topological sort, loosely based
on the IterTS algorithm described by Ajwani et al. [3],
is as follows. Initially assign each vertex v a label L(v).
Those labels induce an ordering over vertices. (For both
our algorithm and IterTS, the labels correspond to a
permutation of vertices, but in principle there could be
ties.) Adopting the terminology from [3], an edge (u, v)
is satisfied if L(u) < L(v) and violated otherwise.
The goal is to adjust labels over time such that eventu-
ally all edges are satisfied.

To understand what makes the problem difficult,
consider the following naive implementation of the gen-
eral strategy. Use Li(v) to denote the label of v in
round i. Initially assign all vertices v the label L0(v) =
0. In each round i, update every vertex v’s label to
Li(v) = max {Li−1(u) + 1|(u, v) ∈ E}. (This type of
update can be implemented by standard techniques, ob-
taining the updated label for all vertices via a constant
number of sorts.) Although v’s label increases to en-
sure that Li(v) > Li−1(u), the edge (u, v) only becomes
satisfied if Li(v) > Li(u); if u’s label also increases dur-
ing this round, then the edge may not be satisfied. In
fact, with this implementation the edge (u, v) would
only become satisfied during the round ` for ` equal
to the length of the longest path to u. The end result is
an algorithm with O(V · sort(E)) worst-case I/O cost.
Granted, this implementation is particularly naive, but
it seems difficult to beat. Indeed, IterTS [3], which ap-
plies heuristics to achieve good performance in practice,
encounters this bottleneck.

Note that it is trivial to satisfy roughly half the
edges immediately by randomly permuting all the ver-
tices and labeling vertices by their rank in the permuta-
tion. The challenge is in improving the labeling beyond
that point.

1.3.1 Algorithm Overview. An issue with the
naive algorithm is that, in some sense, its label updates
are too aggressive. Perhaps counter-intuitively, directly
ensuring that Li(v) > Li−1(u) for all edges does not

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2054

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

seem to lead to efficient algorithms. Instead, our algo-
rithm temporarily gives-up on satisfying certain edges,
which makes it easier to satisfy the other edges.

Our algorithm (described more fully in Section 3)
performs the following type of recursive partitioning of
the graph, somewhat inspired by [12]. Each vertex
chooses a random priority value. That priority is
propagated some (random) distance forward in the
graph. Each vertex adopts the highest priority it has
seen, with potentially many vertices adopting the same
priority. (This step is performed in a way that ensures
that the endpoints of already-satisfied edges remain in
priority order.) Next, vertices are collected into groups
where all vertices in the group have equal priority. The
groups are ordered in increasing order of priority, and
finally the algorithm recurses on the vertex-induced
subgraphs for each group.

The analysis considers any particular violated edge
(u, v). The main claim is that in one full execution of
this recursive algorithm, (u, v) has at least a constant
probability of becoming satisfied. Repeating the recur-
sive algorithm a logarithmic number of times gives the
high-probability result for all edges.

The proof itself is counter-intuitive but also simple
in hindsight. Consider a particular violated edge (u, v).
Initially both u and v are in the same recursive subprob-
lem. Ties on priority are good in the sense that they
keep u and v in the same recursive subproblem. Even-
tually, at some recursive step, u and v adopt different
priorities and are placed in different recursive subprob-
lems, which fixes the status of (u, v) for the remainder
of the execution; the edge becomes satisfied if u’s sub-
problem is ordered before v’s, and the edge is said to
be broken if v’s subproblem is ordered before u’s. The
two key components of the analysis are the following:
(1) at each level of recursion, the probability that the
edge becomes broken is proportional to 1/K, where K
is the number of distances selected from, and (2) af-
ter enough levels of recursion, the edge is very likely
to cross subproblem boundaries. By selecting distances
randomly from a large-enough range, the probability of
an edge becoming broken is low enough that the edge is
likely to cross subproblem boundaries before it has too
many chances of becoming broken. If the edge crosses
subproblem boundaries but is not broken, then it must
be satisfied.

Extension to strongly connected compo-
nents. The extended algorithm propagates priorities
both backwards and forwards, contracting groups of ver-
tices reached in both directions. The analysis follows a
similar framework, but the presence of cycles compli-
cates various aspects of the algorithm and analysis.

Roadmap. The remainder of the paper is organized as
follows. Section 2 presents some related work on I/O-
efficient graph algorithms as well as non-I/O algorithms
that use similar techniques. Section 3 presents the
algorithm for topological sort, and Section 4 analyzes
that algorithm. Section 5 gives the algorithm for
strongly connected components and its analysis.

2 Related Work

There is a large body of work, e.g., [1,5,6,9–11,18,20–23]
on graph algorithms in the I/O model. See [26] or [27]
for good surveys on the topic. For undirected graphs,
many problems can be solved in O(sort(E)) I/Os. (In
fact, for dense graphs the logarithmic term in the
sort bound can be improved slightly through sparsifi-
cation [15].) For example, connectivity problems such
as connected components, minimum spanning forest,
biconnectivity, etc., can all be solved in O(sort(E))
I/Os [10], with high probability. If randomization
is not allowed, there are several deterministic algo-
rithms [1, 5, 10, 18, 23], which tend to be at worst loga-
rithmic factors from the sort bound.

The directed analog of the connectivity problems
are the reachability problems such as single-source
reachability, topological sort, and strongly connected
components. The best known bounds for these prob-
lems are significantly worse than for their undirected
counterparts. Specifically, all of the best existing algo-
rithms [9, 10] have a V term in their I/O cost, which is
not I/O efficient in general. If the graphs are restricted
to be planar graphs, however, many of these problems
and more can be solved in O(sort(E)) I/Os [5, 8, 19].

Due to the lack of provably efficient algorithms for
topological sort, some research has focused on engineer-
ing practically efficient algorithms [3, 28]. For example,
Ajwani et al. [3] use an iterative approach that follows
the same general strategy as our algorithm.

Related work beyond I/O algorithms. In the
RAM model, strongly connected components (SCCs)
can be identified in linear time [14, 24] by performing
depth-first search.

Our algorithms shares some similarities with other
topological-sort or SCC algorithms that perform recur-
sive decompositions of the graph [12, 13, 16] instead of
depth-first search. Coppersmith et al. [13] describe a
randomized divide-and-conquer algorithm for comput-
ing the strongly connected components that runs in
O(E log V) expected time in the RAM model. Cohen et
al. [12] use a labeling scheme, which has a similar recur-
sive structure, to solve an incremental topological sort
where edges are added to the graph over time. Fine-
man’s [16] parallel algorithm, which also starts from
similar ideas, solves the static reachability problems

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2055

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 1 I/O Efficient Topological Sort

1: function TopologicalSort(G = (V,E))
2: repeat until the vertices V are topologically sorted
3: RecurTS(G, 1, |V | , 0)

4: function RecurTS(G, i, j, depth) . Reorders the subarray V [i . . j] of vertices
5: G′ = G[i . . j]
6: if depth ≥ λ or i = j then return

7: dmax = (λ− depth) ·K
8: dmin = dmax −K
9: Choose d uniformly at random from [dmin, dmax)

10: Choose a uniformly random permutation of priorities {ρ(v)}
11: For all v, compute l(v) = max {ρ(u) : u �d v in G′}
12: Sort vertices V [i . . j] lexicographically by 〈l(v), index (v)〉
13: Partition V [i . . j] into maximal groups [i1, j1], [i2, j2], . . . , [it, jt] of a single label (ir = jr−1 + 1)
14: for each r = 1 to t
15: RecurTS(G, ir, jr, depth + 1)

with O(E · poly(log V)) work and O(V 2/3 · poly(log V))
span/depth, with high probability.

The recursive structure of our topological-sort al-
gorithm is most similar to that of Cohen et al. [12]
in that the subproblems are defined by performing for-
ward searches from each vertex. Like Fineman’s algo-
rithm [16] but unlike the others, our algorithm performs
the label propagation / graph search to a bounded dis-
tance, but the specific notions of distance are differ-
ent. Many of the specific details, such as how distances
are chosen, also resemble features in Fineman’s algo-
rithm [16]. This fact should not be surprising given
that there are relationships between parallel algorithms
and I/O algorithms (see, e.g., [10] for discussion).

Though there are some similarities in the details
between the parallel algorithm [16] and the I/O algo-
rithm presented herein, these similarities are somewhat
superficial; the primary challenges in each setting are
actually quite different. Notably, our I/O efficient al-
gorithm leverages time-forward processing, which is not
efficient in the parallel model. In contrast, the parallel
algorithm strongly exploits random accesses, which are
not efficient in the I/O model.

3 Topological Sort Algorithm

This section describes the algorithm for topologically
sorting a directed acyclic graph G = (V,E). The
algorithm is analyzed in Section 4.

The graph is initially provided with the vertices
in arbitrary order. As is typical for I/O algorithms,
the graph representation is an array V of vertices and
an array E of edges. Each vertex is represented by a
unique ID, and each edge is represented by the IDs of
its endpoints. Because the algorithm will sort the edge

array many times, there need not be any assumption on
the initial ordering or grouping of edges.

The goal of the algorithm is to gradually reorder
vertices such that all edges are eventually satisfied,
defined next. For each vertex, index (v) denotes the
index of v in the vertex array, i.e., v = V [i] means
index (v) = i.

Definition 3.1. An edge (u, v) ∈ E is satisfied if
the index (u) < index (v) in the current vertex ordering.
Otherwise, (u, v) is violated.

The algorithm is designed to ensure that once an edge
becomes satisfied, it remains satisfied for the rest of the
execution.

Algorithm 1 presents a high-level description of the
algorithm, ignoring the low-level details necessary to
transform the algorithm to an efficient I/O implementa-
tion. The main algorithm topologically sorts the graph
by performing a sequence of executions of a recursive
algorithm, called RecurTS. The goal with each execu-
tion of the recursive algorithm is to reorder vertices to
satisfy some, ideally a constant fraction, of the violated
edges. The main algorithm terminates when all edges
have been satisfied, i.e., when the vertices in V are in
topological-sort order. Section 3.1 describes RecurTS
in more detail, and Section 3.2 briefly describes how to
implement RecurTS I/O efficiently.

3.1 The Recursive Algorithm. At a high level, the
recursive algorithm chooses random priorities for each
vertex, propagates the priorities some distance in the
graph, reorders vertices according to the highest priority
observed, and finally recurses on subgraphs induced by
vertices of the same priority. Before describing the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2056

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

algorithm in more detail, we first clarify the notion of
distance adopted by the algorithm.

Distances. All distances discussed in this paper
are with respect to the number of violated edges, i.e.,
interpreting violated edges as having weight 1 and
satisfied edges as having weight 0. If there exists a path
from u to v that includes at most d violated edges, then
we say u can reach v at distance d, denoted u �d v.
We also say that u is a d-hop predecessor of v.

The relation �∞ is the standard notion of reachabil-
ity, and when the vertices are in topological-sort order
�0 and �∞ are equivalent. Note that unlike �∞, when
d is a finite fixed distance �d is not transitive; however,
x �d1 y and y �d2 z implies x �d1+d2 z.

Vertex-induced subgraphs. Each recursive call
operates on a contiguous subarray of vertices and the
subgraph induced by those vertices. We use G[i . . j] to
denote the vertex-induced subgraph of G, induced by
vertices in V [i . . j].

Global parameters. The algorithm is parameter-
ized by K and λ. The value λ specifies the maximum re-
cursion depth, which will be discussed at the end of this
subsection. The value K specifies the number of pos-
sible distances from which to select a random distance.
There is a tradeoff here. Choosing larger K decreases
the probability of an edge becoming broken, thereby in-
creasing the number of edges that become satisfied. On
the other hand, larger K also leads to higher I/O cost.
A good value is selected in Section 4.

The algorithm. For now, ignore the recursion
depth, λ, and the specific range of distances. The algo-
rithm RecurTS(G, i, j, depth) operates on the induced
subgraph G[i . . j] as follows. Choose a distance d uni-
formly at random from a contiguous range of K possi-
ble distances. Assign each vertex v a distinct random
priority ρ(v). For each v, let l(v) denote the high-
est priority from among v’s d-hop predecessors, i.e.,
l(v) = max {ρ(u) : u �d v in G[i . . j]}. Sort the vertices
by l(v) using a stable sort. This is the only place in the
algorithm where vertices are reordered and edges may
become satisfied. At this point, vertices with the same
label l are grouped together into contiguous subarrays,
and the groups are sorted by label. Finally, recurse on
each group.

Figure 1 illustrates an example of a single level of
recursion. In the figure, the distance used is d = 2.
The three subfigures illustrate (1a) the initial graph
and vertex ordering, (1b) the labels assigned to vertices
after propagating priorities to a distance of d = 2,
and (1c) the new ordering on vertices and the recursive
subproblems. After reordering vertices here according
to label, two previously violated edges, namely (D,C)
and (J, I), become satisfied. Notice that only some

J
A

D BN

E F G
H

I

K

L

M

OC
13

15

14

6
7 4

12

1 2
3

5

8
9

10

11

4 12 7 6 14 2 8 9 3 11 10 1 15 5 13
A B C D E F G H I J K L M N O

(a) Graph with priorities

J
A

D BN

E F G
H

I

K

L

M

OC
15

15

14

6
7 14

14

14 13
15

14

14
14

15

14

14 14 7 6 14 13 14 14 15 14 15 14 15 14 15
A B C D E F G H I J K L M N O

(b) Labels after propagations

J
A

BN

E F G
H

I

K

L

M

OC
15

15

14

7 14

14

14 13
15

14

14
14

15

14

D
6

6 7 13 14 14 14 14 14 14 14 14 15 15 15 15
D C F A B E G H J L N I K M O

(c) Sorted by label, with subproblems shaded

Figure 1: An example of a single level of recursion
for Algorithm 1, with d = 2. Each of the three
subfigures shows two equivalent images of the same
graph, with the bottom image displaying the current
vertex ordering from left to right. Vertices are labeled
alphabetically by their initial ordering. Solid arrows
represent satisfied edges (i.e., those edges directed to the
right in the vertex-ordered graph) and dashed arrows
represent violated edges (those edges directed to the
left). The number over each vertex is either its random
priority (in 1a) or its label (in 1b and 1c).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2057

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

of the edges crossing subproblem boundaries transition
from violated to satisfied, and no edges change from
satisfied to violated.

Distance ranges and maximum recursion
depth. One component of the analysis (Section 4) is
that the number of d-hop predecessors of v decreases
with each level of recursion. This progress argument,
however, is with respect to the specific distance, and it
seems difficult to argue anything about the number of
d′-hop predecessors for d′ > d. On the other hand, to
argue that edges are unlikely to be broken, distances
need to be selected randomly from K possibilities. To
reconcile these two issues, the range of distances de-
pends on the level of recursion, decreasing with each
level. Moreover, since distances should always be posi-
tive, the distance used at recursion depth 0 places a limit
on the number of levels of recursion that the algorithm
can support.

Putting these ideas together, we have the following.
If a call is made with recursion depth depth ≥ λ,
then the algorithm simply returns. Otherwise, the
distance d is selected uniformly at random from the
range [dmin, dmax), where dmin = dmax −K and dmax =
(λ− depth) ·K.

3.2 I/O Implementation Details. This section de-
scribes how to implement RecurTS I/O efficiently, all
of which is fairly straightforward. We first describe the
implementation with respect to the initial call to Re-
curTS on the entire graph. We later describe how to
implement the recursion.

Each vertex and edge record is augmented with a
constant amount of additional information, so that the
total space of the vertex and edge arrays is still O(|V |)
and O(|E|), respectively. The standard technique for
transferring information along edges is by performing
sorts and scans of the vertex and edge arrays. These
sorts should be viewed as transient, unlike the sort
explicitly given in Algorithm 1 whose goal is to produce
the topological sort.

First, tag each vertex v with its index index (v),
which can be achieved by a single scan (that is, iterating
in order) of the vertex array. Next tag each edge by
the indices of its endpoints. This edge-tagging step
can be accomplished by sorting both the vertex array
by vertex ID and sorting the edge array by the ID of
one endpoint. Then perform simultaneous scans of the
vertex array and edge array, synchronizing the scans on
ID, and copying the index of the vertex to the edges
with matching endpoint ID. To store the index of the
other endpoint, sort by the other endpoint. The cost of
these steps is Θ(sort(V)+sort(E)) for sorting the arrays
and O(scan(V)+ scan(E)) for iterating over them. The

sort bound dominates.
To assign a permutation of priorities, simply select

random numbers in the range 1, 2, . . . , |V |c for each
vertex, where c ≥ 2 is a constant that controls failure
probability. Sort the vertices by priority and perform
a scan to verify that all priorities are distinct. Repeat
this process until the priorities are distinct.

Propagating Priorities The most difficult aspect is
implementing the label l(v) = max {ρ(u) : u �d v}.
This is achieved incrementally through a sequence of
propagation steps. Initially set l(v) = ρ(v) and perform
an update called satisfied-edge propagation. Next,
perform d rounds, each including violated-edge prop-
agation followed by satisfied-edge propagation. There
are thus 2d+ 1 propagation steps in total.

Before describing how to implement the two types
of propagation steps, let us first discuss the goal of
each type of update. Let l(v) and l′(v) denote v′s
labels at the start and end, respectively, of a single
propagation step (satisfied or violated). The goal of
satisfied-edge propagation is to update the label to
l′(v) = max {l(u) : u �0 v}, i.e., propagate the label
arbitrarily far but along satisfied edges only. The
goal of violated-edge propagation is to update the
label to l′(v) = max {l(v),max {l(u) : (u, v) ∈ E}}, i.e.,
propagate the label along a single hop that is allowed
to be violated.

We now argue that the sequence of propagation
steps gives each vertex the intended label.

Lemma 3.1. After d+1 satisfied-edge propagation steps
interleaved with d violated-edge propagation steps, we
have l(v) = max {ρ(u) : u �d v} for all v ∈ V .

Proof. The proof is by induction on d. The base case is
d = 0, meaning that we are considering the result of the
first satisfied-edge propagation. Initially, l(u) = ρ(u) for
all u ∈ V . The propagation step then updates the labels
to l′(v) = max {l(u) : u �0 v} = max {ρ(u) : u �0 v},
which satisfies the claim for d = 0.

For the inductive step, assume that l(x) =
max {ρ(u) : u �d−1 x} for all x ∈ V after the first
d − 1 rounds, and consider the effect of performing
one more round consisting of a violated-edge prop-
agation step followed by a satisfied-edge propaga-
tion step. The violated-edge propagation updates
the labels to l′(y) = max {l(x) : (x, y) ∈ E}. By
the inductive assumption on l(x), this reduces to
l′(y) = max {ρ(u) : u �d−1 x, (x, y) ∈ E}. The sub-
sequent satisfied-edge propagation step updates the
labels once more to l′′(v) = max {l′(y) : y �0 v},
which when substituting in l′(y) gives l′′(v) =
max {ρ(u) : u �d−1 x, (x, y) ∈ E, y �0 v}. Observing

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2058

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

that any path containing d violated hops can be bro-
ken down into a path of d− 1 violated hops followed by
a single violated edge followed by a satisfied path, as in
the preceding expression, completes the proof.

Implementing satisfied-edge propagation.
The satisfied edges Esat can be identified by scanning
through the edge set and identifying those edges (u, v)
with index (u) < index (v). Note that when V is sorted
by index, the graph Gsat = (V,Esat) is topologically
sorted, which is important as we shall apply time-
forward processing.

In more detail, performing the update l′(v) =
max {l(u) : u �0 v in G} is equivalent to computing
l′(v) = max {l(u) : u �∞ v in Gsat}. The following is
a simple sequential algorithm for computing the up-
dated label with regards to Gsat . Consider the ver-
tices v in Gsat in topological-sort order; update v’s
label to max {l(v),max {l(u) : (u, v) ∈ Esat}}, i.e., the
maximum of its old value and the value on all imme-
diate predecessors. This local-update rule is exactly
the kind that can be implemented I/O-efficiently using
time-forward processing [4, 10], assuming Gsat is topo-
logically sorted.

Implementing violated-edge propagation.
This step can be accomplished by sorting and scan-
ning. In particular, first sort the edges (u, v) by
index (u) so that all outgoing edges for a particular
vertex u are consecutive. Then scan through the ver-
tices and edges simultaneously, synchronizing on the
vertex index. Attach to the edge (u, v) the priority
l(u, v) = l(u). Next, sort the edges (u, v) by index (v).
Now the incoming edges for each vertex v are con-
secutive. Finally, scan through the edges and ver-
tices simultaneously, and for each v update l′(v) =
max {l(v),max {l(u) : (u, v) ∈ E}}.

Implementing the recursion. To slightly sim-
plify the analysis of the I/O cost, it is convenient to
reason about the algorithm as performing the recursion
level by level.1 That is, do not actually make multiple
recursive calls. Instead, perform the algorithm as de-
scribed for the entire level at once. The only additional
bookkeeping necessary is to delimit the boundaries be-
tween each recursive subproblem in the vertex array.
Each level of recursion can then be implemented by
first scanning through the vertex array and tagging each
vertex with a subproblem ID (increasing by one when

1The issue is that there are no bounds on the relative sizes of
a problem and its recursive subproblems — a graph that fits in
cache may be partitioned into subgraphs that are much smaller
than a block. If considering each recursive subproblem one at a
time, the analysis would have to be careful about the accounting
of these small subproblems.

crossing each subproblem boundary) and similarly tag-
ging the edges with the subproblem IDs of its endpoints.
All edges whose endpoints have different subproblems
should be ignored in all steps. Whenever sorting vertices
by label or priority, the subproblem ID should also be
taken into account as the most significant feature in the
sort. (That is, sort lexicographically by subproblem ID,
then label/priority.) The other details are unchanged.

We can now analyze the I/O cost of the recursive
algorithm. Assuming a minimum constant size on the
cache is necessary to implement a constant number of
synchronized scans in O(scan(N)) I/Os. There are also
similar cache-size assumptions in time-forward process-
ing [4] (which are not highlighted in those theorem state-
ments) that would carry-over to this setting.

Lemma 3.2. There exists a constant c such that the
following holds: if the cache contains at least c blocks,
then a single execution of RecurTS has I/O cost
O(Kλ2sort(E)), with high probability. The K ≥ 1 and
λ ≥ 1 here are the global parameters of the algorithm.

Proof. Each of the λ levels of recursion performs d
rounds of label propagation, where d is at most λK.
Each round of label propagation can be implemented in
O(sort(E)) I/Os. All other steps of the algorithm can
also be accomplished in a constant number of scans and
sorts, except that the priority selection performs a single
attempt with high probability. (The failure probability
depends on the range of priorities.) The cost of each
level of the λ levels of recursion is thus O(Kλsort(E)).

4 Topological Sort Analysis

The section analyzes the topological-sort algorithm
given in Section 3. The goal is to show that, with
high probability, the main algorithm completes after
O(log V) executions of RecurTS. The key component
toward achieving this goal is to show that in each exe-
cution, each violated edge has a constant probability of
becoming satisfied. The bulk of this section is devoted
to proving this claim. Given the claim, it is simple to
show that O(log V) executions suffice.

Consider any violated edge (u, v) and an execution
of RecurTS. The most important point of the execu-
tion is the moment, if any, that u and v receive differ-
ent priorities and are hence placed in different recursive
subproblems. This step is the only time during the exe-
cution that the relative order of u and v may change. If
u is ordered before v, then the edge becomes satisfied.
If u remains ordered after v, however, then the edge
(u, v) cannot become satisfied for the remainder of the
execution (i.e., until the next execution of RecurTS.)
The following definition captures this bad outcome:

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2059

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 4.1. An edge (u, v) is broken if (i)
index (v) < index (u), i.e., u precedes v in the ordering
of vertices, and (ii) u and v are in different recursive
subproblems.

In Figure 1c, the broken edges are (L,F), (I,H), (O,A),
and (O,N).

As outlined in Section 1.3.1, our analysis consists
of two main components. First, we argue that, for
large enough K, an edge (u, v) has at most constant
probability of becoming broken during an execution
of RecurTS. Second, we argue that for large enough
λ, the execution is likely to terminate with u and v
in different subproblems. If u and v are in different
subproblems, and the edge is not broken, then it must
be satisfied. The remainder of the section focuses on
proving each of these claims.

Predecessors. Throughout the analysis, it is use-
ful to refer to the set of predecessors of a particular
vertex. Let G = (V,E) be a graph, let v ∈ V be a
vertex in the graph, and let d be a distance. We define
the d-hop predecessors of v, denoted by A(G, v, d),
as A(G, v, d) = {x : x �d v in G}.

4.1 Bounding the Probability of an Edge Be-
coming Broken. We argue that in any level of recur-
sion, a particular violated edge (u, v) has probability at
most O(log V/K) of becoming broken. Taking a union
bound across all λ levels of recursion gives a probability
of at most O(λ log V/K) that the edge becomes bro-
ken across the entire execution of RecurTS. Setting
K = Ω(λ log V) and tuning constants appropriately, the
probability that (u, v) becomes broken is upper bounded
by a constant.

We begin by considering how an edge can become
broken. The following lemma implies that an edge (u, v)
can become broken only if u’s highest-priority d-hop
predecessor is located exactly d violated hops away.

Lemma 4.1. Consider a call RecurTS(G, i, j, depth).
Let G′ = G[i . . j] denote the induced subgraph, let (u, v)
be an edge in G′, and let d be the random distance
chosen. Finally, let x denote the vertex in A(G′, u, d)
with the highest priority ρ(x). If x ∈ A(G′, u, d − 1),
then l(u) ≤ l(v).

Proof. Suppose x ∈ A(G′, u, d − 1). Then we have
x �d−1 u and u �1 v, giving x �d v. It follows that
l(v) ≥ ρ(x). Moreover, since x is the vertex with highest
priority among u’s d-hop predecessors, l(u) = ρ(x). We
thus have l(v) ≥ ρ(x) = l(u).

We next bound the probability that an edge (u, v)
becomes broken in a particular recursive call. Consider

the random process as follows. First choose a random
distance. Then identify which vertex, from among the
d-hop predecessors, has highest priority. Specifically,
determine if the highest-priority predecessor is also a
(d−1)-hop predecessor; if so, by the previous lemma the
edge does not break. The probability of the edge break-
ing thus depends on the relative sizes of the A(G′, u, d)
and A(G′, u, d− 1). The main idea is therefore to char-
acterize distances by relative neighborhood sizes.

The argument is roughly as follows, but the follow-
ing lemma provides a tighter bound. A distance d is
“bad” if at least a 1/ log V -fraction of the d-hop prede-
cessors are at distance exactly d, i.e., not also (d−1)-hop
predecessors. If a bad distance is selected, the proba-
bility of the edge breaking may be high. Fortunately,
due to the expansion implied by bad distances, there
cannot be too many bad distances — specifically only
O(log2 V) of them. If a good distance is selected, the
probability that the edge breaks is at most O(1/ log V).
Putting these together, the probability that the edge
breaks is O(log2 V/K + 1/ log V). The next lemma im-
proves this to O(log V/K) by more carefully accounting
for how bad each distance is.

Lemma 4.2. Consider a call RecurTS(G, i, j, depth).
Let G′ = G[i . . j] denote the induced subgraph and let
(u, v) be a violated edge in G′. Then the probability
that the edge becomes broken during this call is at most
lg(|V |)/K.

Proof. Let B denote the event that the edge (u, v) is
broken. Let d denote the random distance chosen, and
let x be the vertex in A(G′, u, d) with highest priority.
By Lemma 4.1, Pr [B] ≤ Pr [x 6∈ A(G′, u, d− 1)], so
it suffices to bound the latter.

For each possible d in [dmin, dmax), let sd =
|A(G′, u, d)| denote the number of d-hop predecessors
of u in G′. Define γd = sd−1/sd to be the fraction of of
u’s d-hop predecessors that are also (d − 1)-hop prede-
cessors.

Let Ed denote the event that distance d is chosen.
Once d is fixed, we trivially have Pr [B|Ed] ≤ 1 − γd.
Since the distance is chosen uniformly at random from
K possibilities, we have

Pr [B] =

dmax−1∑
d=dmin

(Pr [B|Ed]·Pr [Ed]) ≤
dmax−1∑
d=dmin

(1−γd)/K .

The vertex u is a d-hop predecessor of itself, and
at most every vertex is a d-hop predecessor of u, so
1 ≤ sd ≤ |V |. We therefore have |V | ≥ sdmax−1 ≥
sdmax−1/sdmin

=
∏dmax−1
d=dmin

(1/γd). By monotonicity of

the lg function, lg(|V |) ≥
∑dmax−1
d=dmin

lg(1/γd). Finally,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2060

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

γd ∈ (0, 1], and for this range lg(1/γd) ≥ 1 − γd. We

therefore have lg(|V |) ≥
∑dmax−1
d=dmin

(1− γd).
Substituting back for the probability of B, we have

Pr [B] ≤ 1

K

dmax−1∑
d=dmin

(1− γd) ≤
lg(|V |)
K

.

4.2 Bounding the Probability that An Edge
Crosses Subproblems. The second key component of
the analysis is to argue that at the end of an execution,
the edge (u, v) is likely to cross subproblem boundaries.
To achieve this goal, we argue that with each level
of recursion, v is likely to lose a constant fraction of
its nearby predecessors. Thus, with Ω(log V) levels of
recursion, it is very likely that v has no predecessors.
If v has no predecessors, then u must be in a different
subproblem.

Definitions. More formally, consider the calls Re-
curTS(G, i, j, `) arising during the execution of the re-
cursive algorithm, where ` here denotes level or depth of
the recursion. If v ∈ G[i . . j], we call G`v = G[i . . j] the
level-` graph of v. Notice that v belongs to at most
one subproblem at each level of recursion. If v does
not belong to any level-` subproblems (i.e., if the base
case was reached early), then G`v is the empty graph.
Thus, v has a corresponding sequence G0

v, G
1
v, . . . , G

λ
v

of level-0, 1, . . . , λ graphs, where G0
v ⊇ G1

v ⊇ · · · ⊇ Gλv .
For this subsection, the important feature is the

number of nearby, proper predecessors v has at each
level of recursion. A vertex x is a level-` active
predecessor of v if x 6= v and x �dmax

v in G`v, where
dmax = K(λ− `) is the maximum distance for this level
of recursion. Notice that v is not an active predecessor
of itself.

Reducing the Number of Active Predecessors.
We start with a simple observation, captured by the
first lemma: no new relationships are created between
vertices as the algorithm recurses. Thus, we need not
worry about the set of active predecessors growing —
the only challenge is to show that a significant fraction
of the predecessors are likely to be knocked out.

Lemma 4.3. Consider any vertex v and its level-(`−1)
and level-(`) subgraphs G`−1v and G`v, respectively. For
any vertex x and distance d, if x 6�d v in G`−1v , then
x 6�d v in G`v.

Proof. At first glance, this statement sounds obvious
given that edges are never created. There is, however,
one concern — satisfying edges can decrease distances
between vertices. Since the relative order of vertices
only changes when those vertices are placed in different

recursive subproblems, an edge can only be satisfied in
G`v if it is already satisfied in G`−1v .

We are now ready to argue that the number of
active predecessors is likely to decrease at each level
of recursion. This proof leverages only the random
priorities — the fact that distances are chosen randomly
is not important. The proof (notably the second claim
therein) lifts some ideas from [16, Lemma 3.4].

Lemma 4.4. Consider any vertex v and level ` of re-
cursion. Let α and α′ denote the number of level-` and
level-(`+1), respectively, active predecessors of v. Then
Pr [α′ ≤ (3/4)α] ≥ 1/3.

Proof. If α = 0, the claim is trivial. Otherwise, consider
the level-` call to RecurTS on graph G`v. Let d be the
distance selected (which need not be random for the
purpose of the proof). Let Ad = A(G`v, v, d)\ {v} denote
the set of d-hop predecessors of v in G`v, excluding v
itself, and let ad = |Ad|. Notice by Lemma 4.3 and
the decreasing distance ranges, the level-(` + 1) active
predecessors are a subset of Ad. Moreover, Ad is a
subset of the level-` active predecessors. It is thus
sufficient to argue that with probability at least 1/3,
at most 3ad/4 ≤ 3α/4 of the vertices in Ad are also in
G`+1
v .

Let x be a random variable denoting the highest-
priority vertex in Ad∪{v}. For any other vertex y ∈ Ad,
we say that x knocks out y if x 6�d y. The remainder of
the proof amounts to proving the following two claims:
(1) If x knocks out y, then y 6∈ G`+1

v , and (2) With
probability at least 1/3, x knocks out at least ad/4
vertices from Ad.

Claim 1. Recall that x is the highest-priority vertex
from Ad ∪ {v}. Thus, v inherits the label l(v) = ρ(x),
which defines its subproblem. If x 6�d y, then l(y) 6=
ρ(x), and y is in a different subproblem from v.

Claim 2. Because the graph is acyclic, for any pair
x 6= y of vertices, at least one of the following must be
true: x 6�d y or y 6�d x. Moreover for all y ∈ Ad, y �d v
by definition, so v 6�d y. Thus the total number of pairs
x ∈ Ad ∪ {v} and y 6= x ∈ Ad for which x knocks out
y must be at least

(
ad
2

)
+ ad = ad(ad + 1)/2. Because x

is selected from ad + 1 choices, the expected number of
vertices knocked out by x is at least ad/2. By Markov’s
inequality, the probability that at least (3/4)ad vertices
are not knocked out is therefore at most 2/3.

Lemma 4.4 indicates that with each level of recur-
sion, the number of active predecessors is likely to de-
crease by a constant factor. The following lemma says
that after enough levels of recursion, v is likely to have
no remaining active predecessors. The implication is

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2061

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

that all of its incoming edges cross subproblem bound-
aries.

Lemma 4.5. Consider any vertex v and a complete
execution of the recursive algorithm. With probability
at least 1 − 8 lg |V | /λ, v has no active predecessors at
the λ-th level of recursion.

Proof. Let Xj be a random variable denoting the num-
ber of levels ` for which the number of active prede-
cessors of v falls in the range [(3/4)j+1, (3/4)j) · |V |,
for integer j. When j ≥ log4/3 |V |, the high end of
the range is strictly less than 1/ |V | · |V | = 1, mean-
ing that v has no active predecessors remaining. Let
X =

∑
j<log4/3|V |

Xj . If X < λ, then at or before the

the λ-th level of recursion, v has no active predecessors.
Our goal is thus to argue that this event is likely to
occur.

Lemma 4.4 implies that the number of rounds neces-
sary to get a (3/4) reduction is at most 3 in expectation.
Thus E[Xj] ≤ E[Xj |Xj ≥ 1] ≤ 3. By linearity of expec-
tation, E[X] ≤ 3 log4/3(|V |) < 8 lg(|V |). By Markov’s
inequality, Pr [X ≥ λ] ≤ 8 lg(|V |)/(λ).

4.3 Edges are Likely to Become Satisfied. Thus
far, we have argued that edges are unlikely to become
broken at any particular level of recursion, and that
edges are likely to cross subproblem boundaries by the
time the recursive algorithm terminates. This section
combines those pieces to conclude that in a single
execution of the recursive algorithm, a violated edge
is likely to become satisfied.

Before getting to the main claim, we first observe
that satisfied edges stay satisfied. This fact is important
both to argue that a violated edge is likely to become
satisfied in a single execution, and to argue that multiple
executions lead to monotonic progress.

Lemma 4.6. Consider an execution of the recursive
algorithm RecurTS. If an edge (u, v) is satisfied at
the `-th level of recursion, then it is satisfied at all
subsequent levels of recursion.

Proof. Proof by induction on the level of recursion.
Consider the call at the `th level of recursion, and
suppose that the edge (u, v) is satisfied at the start of
the call. The goal is to show that it remains satisfied
in the next recursive subproblem. Note that if (u, v)
is satisfied at the start of the call, then u �0 v in the
current graph. Let l(u) be the final label on vertex u,
and let x be the vertex such that l(u) = ρ(x). Then
x �d u, which coupled with u �0 v implies that x �d v.
It follows that l(v) ≥ l(u). If l(v) = l(u), then u and v
maintain their current ordering. If l(v) > l(u), then v is

placed in an even later subproblem. Either way, (u, v)
remains satisfied.

Lemma 4.7. Let (u, v) be any edge, and consider a
complete execution of RecurTS with parameters λ ≥
32 lg V and K ≥ 4λ lg V . If (u, v) is violated initially,
then with probability at least 1/2, (u, v) is satisfied at
the end of the execution. If (u, v) is satisfied initially,
then with probability 1 it is still satisfied at the end.

Proof. By Lemma 4.6, a satisfied edge always remains
satisfied. The remainder focuses on the case that (u, v)
is initially violated.

Let A be the event that (u, v) is violated at the
end of the execution. Let B be the event that the edge
breaks at some level of recursion, and let C be the event
that the two endpoints u and v are in the same level-λ
subproblem. If neither B nor C occurs, then the edge
crosses properly ordered subproblems and the edge is
satisfied. We thus have Pr [A] ≤ Pr [B] + Pr [C] by
a union bound.

By Lemma 4.5, Pr [C] ≤ 8 lg V/λ ≤ 1/4 for the
specified choice of λ. By Lemma 4.2, the probability
of breaking at any individual level is at most lg V/K.
Taking a union bound across λ levels, we have Pr [B] ≤
λ lg V/K ≤ 1/4 for the specified choice of K. Adding
these together gives total failure probability of at most
1/2.

4.4 Bounds on the Main Algorithm. Finally we
analyze the main algorithm, which repeatedly executes
RecurTS until the graph is topologically sorted.

Theorem 4.1. Let G = (V,E) be any directed acyclic
graph, and choose λ ≥ 32 lg V and K ≥ 4λ lg V .
Then for any c > 0, with failure probability at most
1/ |V |c, the graph is topologically sorted after at most
d(c+ 2) lg V e iterations of the recursive algorithm.

Proof. Consider any initially violated edge (u, v). By
Lemma 4.7, each execution of RecurTS satisfies the
edge with probability at least 1/2. Moreover, if the edge
is satisfied in any iteration, it remains satisfied for all
subsequent iterations. The probability that the edge is
still violated after d(c+ 2) lg V e iterations is therefore at

most (1/2)(c+2) lg V = 1/ |V |c+2
. Taking a union bound

across less than |V |2 possible edges completes the proof.

Theorem 4.2. For any directed acyclic graph G =
(V,E), there exist settings of K and λ such that the
algorithm topologically sorts the graph in O(sort(E) ·
log5 V) I/Os, with high probability.

Proof. From Lemma 3.2, a single execution of Re-
curTS has I/O cost O(Kλ2 · sort(E)), with high prob-
ability. Theorem 4.1 states that O(log V) executions

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2062

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

suffice, with high probability, for λ = Θ(log V) and
K = Θ(λ log V) = Θ(log2 V). Multiplying the O(log V)
executions by the cost per execution gives the theorem.

5 Strongly Connected Components

This section describes our algorithm for strongly con-
nected components. Given a graph G = (V,E), ver-
tices u, v ∈ V are strongly connected if there ex-
ist directed paths both from u to v and from v to u.
A strongly connected component is a maximal set
of vertices such that every pair of vertices therein is
strongly connected. The condensation H of a graph
G is the DAG of strongly connected components, i.e.,
the graph formed if each strongly connected component
is contracted. The goal is to identify for each vertex the
strongly connected component to which it belongs and
to topologically sort the condensation.

At a high level, the main intent of the algorithm
is similar to Algorithm 1 — reorder vertices to satisfy
more edges. But it would, of course, be impossible to si-
multaneously satisfy all edges on a cycle. Our algorithm
for strongly connected components therefore performs a
little extra work to identify strongly connected vertices,
notably those falling on short cycles, and contract them
into a single supervertex. The graph is thus gradually
transformed into its condensation; with each iteration,
the number of violated edges may reduce both by remov-
ing contracted edges from the graph and by reordering
any remaining supervertices.

Aside from the contraction, component mainte-
nance, and extra bookkeeping, the main difference be-
tween the algorithms for topological sort and strongly
connected components is that the former propagates
priorities in only the forward direction, whereas the lat-
ter propagates priorities both forwards and backwards.
This two-directional propagation facilitates the discov-
ery of cycles.

5.1 Algorithm. Algorithm 2 presents a conceptual
version of the algorithm for topologically sorting the
condensation H of the graph G = (V,E). Section 5.2
provides implementation details for mapping this algo-
rithm to the I/O model.

The algorithm maintains three types of information:
(1) A mapping from vertices in the original graph to
(partial) components, where each partial component is
a subset of vertices in a strongly connected component;
(2) A graph H = (VH , EH) on the partial components,
corresponding to the graph formed by contracting each
partial component in G; and (3) An ordering of the
vertices VH in the component graph. As the algorithm
progresses, components are merged together through
contraction steps. When the algorithm terminates, H

is the condensation, and the vertex ordering represents
a topological sort of the condensation.

As before, the top-level algorithm consists of mul-
tiple iterations. But now each iteration consists of not
only an execution of RecurSCC, but also a contraction
step following the execution. Each execution of Re-
curSCC is analogous to RecurTS, except that some
vertices are flagged for contraction. Specifically, the out-
put of RecurSCC is an updated ordering of the ver-
tices VH in the component graph H as before, but unlike
RecurTS some contiguous sets of vertices flagged for
contraction. Any initially satisfied edges between un-
flagged vertices remain satisfied, as before, and ideally
some violated edges become satisfied. During the con-
traction step, sets of vertices identified as being strongly
connected are contracted, removing any edges between
them.

The Recursive Subroutine. The recursive subrou-
tine RecurSCC is parameterized by global values λ
and K, denoting the maximum recursion depth and
range of distances to choose from, respectively. Re-
curSCC takes as input an induced subgraph H[i . . j]
of the graph on partial components, and the current
recursion depth depth.

RecurSCC proceeds as follows. Much of the
algorithm is similar to RecurTS of Section 3. Firstly,
check if the recursion depth is exceeded (i.e., depth ≥ λ),
and if so simply return. Otherwise, choose a distance d
uniformly at random from the range [dmin, dmax), where
dmin = dmax − K. As in Section 3, the offset for the
range is chosen according to the recursion depth, with
dmax = (λ− depth) ·K.

Next, assign a uniformly random permutation of
priorities ρ(v) to each vertex. Unlike RecurTS, Re-
curSCC propagates the priorities in both the for-
ward direction and the backward direction. Specifi-
cally, define f(v) = max {ρ(u) : u �d v} and b(v) =
max {ρ(w) : v �d w}. Assign a label l(v) to each ver-
tex v based on the results of the forward and back-
ward searches. There are three cases. If the priority
from the forward search dominates, i.e., f(v) > b(v),
then l(v) = f(v) as in RecurTS. If the priority from
the backward search dominates, i.e., b(v) > f(v), then
l(v) = −b(v). These two cases are symmetric — ver-
tices dominated by larger priorities in the forward di-
rection are pushed later in the ordering, and vertices
dominated by larger priorities in the backward direc-
tion are pushed earlier in the ordering. The third case
is if the priorities are equal in both direction. In this
case, set l(v) = −b(v) + 1/2.

Finally, sort the vertices by l(v), with ties broken
according to the current ordering. After sorting, parti-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2063

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2 Conceptual algorithm for strongly connected components

1: function SCC(G = (V,E))
2: H = (VH , EH), where VH = V and EH = E initially
3: repeat until H is topologically sorted
4: RecurSCC(H, 1, |VH | , 0)
5: Perform contraction step and update H

6: function RecurSCC(H, i, j, depth) . Reorders the subarray VH [i . . j] of vertices
7: H ′ = H[i . . j]
8: if depth ≥ λ or i = j then return

9: dmax = (λ− depth) ·K and dmin = dmax −K
10: Choose d uniformly at random from [dmin, dmax)
11: Choose a uniformly random permutation of priorities {ρ(v)}
12: For all v, compute f(v) = max {ρ(u) : u �d v in H ′}
13: For all v, compute b(v) = max {ρ(w) : v �d w in H ′}
14: for each v ∈ VH [i . . j]

15: l(v) =

−b(v) if b(v) > f(v) (backward search dominates)

−b(v) + 1/2 if b(v) = f(v) (strongly connected)

f(v) if b(v) < f(v) (forward search dominates)

16: Sort vertices VH [i . . j] lexicographically by 〈l(v), index (v)〉
17: Partition VH [i . . j] into maximal groups [i1, j1], [i2, j2], . . . , [it, jt] of a single label (ir = jr−1 + 1)
18: for r = 1 to t
19: if f(VH [ir]) = b(VH [ir]) then . do not recurse on strongly connected groups
20: mark the vertices in the group for contraction
21: else RecurSCC(H, ir, jr, depth + 1)

tion the vertices into groups of vertices having the same
label, as in RecurTS. Recurse on those groups with
integer labels, i.e., f(v) 6= b(v). The groups with non-
integer labels are instead flagged for contraction.

Note that the specific choice of label −b(v) + 1/2
for the third case is not particularly important. The
only truly important aspect is that −b(v) < l(v) < f(v)
to ensure that satisfied edges remain satisfied. In fact,
the ordering across groups of vertices that fall in this
third case, for different priorities, does not matter.
It is, however, easier to implement the subsequent
contraction if each such group of vertices be contiguous.
To achieve that, we include the dominating priority in
the label, e.g., choosing l(v) = −b(v) + 1/2; many other
choices would also suffice.

The main theorem, proved in Section 5.4, is the
following:

Theorem 5.1. Let G = (V,E) be any directed graph.
There exist settings of constants c1 and c2 such that for
λ ≥ c1 lg V and K ≥ c2λ lg V , the following holds. For
any c > 0, with failure probability at most 1/V c, the
algorithm terminates within d(c+ 2) lg V e iterations of
the main loop.

5.2 I/O-implementation details. This section
provides details on making the algorithm I/O efficient.
The original vertices of graph G are stored in an array
V . A second array VH stores the vertices of graph H.
Each vertex in H corresponds to a partial component
in G that has been contracted, identified by the ID of a
representative vertex. The edges between components
are stored in an array EH , with each edge storing the
component IDs of its endpoints.

All vertex records u ∈ V for the original graph are
tagged with the ID c(u) of their component’s represen-
tative, which corresponds to the ID of a vertex in VH .
For convenience, the vertex records v ∈ VH are also
tagged with c(v). Initially, c(u) = u for all u ∈ V , and
VH = V . In general between iterations, c(v) = v if
and only if v ∈ VH . When the algorithm terminates,
the vertices representing each strongly connected com-
ponent are topologically ordered in VH , and for each
vertex u ∈ V , c(u) specifies the representative of u’s
strongly connected component.

The details for the recursive algorithm are similar
to those for RecurTS in Section 3.2. There are minor
differences in that the priorities must be propagated in
two directions, now computing b(v) in addition to the
f(v) already computed in RecurTS. But steps for b(v)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2064

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

are symmetric, i.e., operating on the transpose graph,
which can be computed in O(sort(E)) I/Os.

The only significant difference is implementing the
main loop, namely in the contraction step.

Contraction. By design, when RecurSCC re-
turns, groups of vertices that are to be contracted are
contiguous in the vertex array VH . When a group is
flagged for contraction, the boundaries of the group
should also be marked.

The first step of the contraction is to update c(v)
for all vertices v ∈ VH to be contracted. Specifically,
the first vertex x (in array order) in each group is the
representative for the group. All other vertices in the
group update c(u) = x. This step can be accomplished
by a scan of the array VH .

The next step is to update the components for
vertices stored in V . Specifically, each vertex u ∈ V has
some component ID c(u) = v, where v ∈ VH . The goal
is to update c(u) = c(v). To do so, sort V by component
IDs c(u) and sort VH by vertex IDs v. Thus, both V and
VH are sorted according to their original components.
Moreover, the vertices v ∈ VH already know their new
component c(v). Next perform synchronized scans of V
and VH , and for each vertex u ∈ V , update c(u) = c(v).

Any vertices in V with c(v) 6= v can now be removed
from VH . This step can be accomplished with a scan.
At this point, all vertices have the correct component
IDs, and only representatives are stored in VH .

The final step is to update the edges EH . Specif-
ically, any edge (u, v) should be updated to reflect the
component IDs of its endpoints, i.e., (c(u), c(v)). To do
so, sort V by ID, and sort the edges (u, v) ∈ EH by
the ID of u. Next perform synchronized scans of EH
and V , updating u to c(u) for each edge (u, v). Then
sort the edges by the ID of the other endpoint v and
perform a similar update. Finally, self loops can be re-
moved by scanning through all the edges one last time
and checking for any edges of the form (u, u). Option-
ally, duplicate edges can also be removed by sorting the
edges one last time (by both endpoints) and scanning
through to remove duplicates.

5.3 I/O Complexity of Strongly Connected
Components Assuming Theorem 5.1, we now bound
the I/O cost of the algorithm.

Lemma 5.1. A single execution of RecurSCC has
I/O cost O(Kλ2sort(E)) I/Os, with high probability.

Proof. Proof is identical to proof of Lemma 3.2, except
that the specific constants change because priorities
must be propagated in two directions.

Theorem 5.2. For any directed graph G = (V,E),
there exist settings of K and λ such that the algorithm

topologically sorts the condensation of the graph in
O(sort(E) · log5 V) I/Os, with high probability.

Proof. Theorem 5.1 states that for λ = Θ(log V) and
K = Θ(λ2 log V), after O(log V) executions of Re-
curSCC, the algorithm is successful with high prob-
ability. From Lemma 5.1, the cost of each execution of
RecurSCC is O(Kλ2sort(E)). The cost of each con-
traction step is O(sort(E)), which is dominated by the
cost of executing the recursive algorithm. Therefore the
total I/O cost of the full algorithm is O(sort(E)·log5 V).

5.4 Strongly Connected Components Analysis
The goal of this section is to prove Theorem 5.1, i.e.,
that O(log V) executions of the main loop suffice, with
high probability. The analysis follows a similar struc-
ture to the analysis of topological sort in Section 4. The
main goal is to show that any violated edge (u, v) ∈ EH
has a constant probability of either becoming satisfied in
an execution of RecurSCC or being contracted away
thereafter. Since any cycle in the graph must have at
least one violated edge, satisfying all remaining edges
implies that all cycles have been contracted, and the
condensation of the graph is topologically sorted. Given
that claim, it is easy to show that O(log V) iterations
suffice.

As before, the analysis consists of two main com-
ponents applied to graph H. A minor difference is that
groups of vertices to be contracted are technically not
part of a recursive subproblem. Insofar as definitions are
concerned (e.g., being broken), when we say “subprob-
lem” we mean each group of vertices produced by the
partitioning step in the algorithm, either corresponding
to a group to be contracted or a recursive call.

The first component of the analysis is to show that
an edge is unlikely to break. This component is largely
similar to the corresponding component in Section 4,
except that edges may break due to searches in either
direction. Note that, conveniently, edges within a group
to be contracted are never broken as these edges do not
cross subproblem boundaries.

The goal of the second component is now to show
that for any edge (u, v) ∈ EH , the execution of Re-
curSCC is likely to end either with u and v in different
subproblems, or with u and v marked for contraction
with each other. If the edge is not broken, and u and
v are in different subproblems, then the edge becomes
satisfied. If u and v are contracted, then the edge is re-
moved from the graph entirely because the contraction
step removes self loops.

Successors. The main differences in the analysis
arise from the fact that priorities are propagated in two
directions. It is thus no longer sufficient to focus just on
the d-hop predecessors. We must also consider the suc-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2065

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

cessors. We define the d-hop successors of v, denoted
by D(G, v, d), as D(G, v, d) = {x : v �d x in G}.

The presence of backward propagation impacts that
analysis in various places, most of which are minor. The
most difficult is in arguing progress with respect to the
number of nearby vertices. Rather than argue progress
on just the number of nearby (active) predecessors,
Lemma 5.5 argues progress on both nearby predecessors
and successors.

5.4.1 Bounding the Probability of an Edge Be-
coming Broken The following lemmas are analogous
to Lemmas 4.1 and 4.2. Notably, an edge cannot be
broken unless either its d-hop predecessor or successor
is exactly d hops away, which is unlikely to occur.

Lemma 5.2. Consider call RecurSCC(H, i, j, depth).
Let H ′ = H[i . . j] denote the induced subgraph, let (u, v)
be an edge in G′, and let d be the random distance
chosen. Let x denote the vertex with highest priority in
the set A(H ′, u, d). If x ∈ A(H ′, u, d − 1), then f(u) ≤
f(v). Similarly, let y denote the vertex with highest
priority in the set D(H ′, v, d). If y ∈ D(H ′, v, d − 1),
then b(v) ≤ b(u).

Proof. Suppose x ∈ A(H ′, u, d − 1). Then we have
x �d−1 u and u �1 v, giving x �d v. It follows that
f(v) ≥ ρ(x). Moreover, since x has the highest priority
among u’s d-hop predecessors, f(u) = ρ(x). We thus
have f(v) ≥ ρ(x) = f(u).

Suppose y ∈ D(H ′, v, d− 1). Then we have u �1 v
and v �d−1 y, giving u �d y. It follows that b(u) ≥ ρ(y).
Moreover, since y has the highest priority among v’s d-
hop predecessors, b(v) = ρ(y). We thus have b(u) ≥
ρ(y) = b(v).

Lemma 5.3. Consider call RecurSCC(H, i, j, depth).
Let H ′ = G[i . . j] denote the induced subgraph and let
(u, v) be a violated edge in H ′. Then the probability
that the edge becomes broken during this call is at most
2 lg(|V |)/K.

Proof. The violated edge (u, v) becomes broken if and
only if l(u) > l(v), in which case v is ordered before u,
and u and v are placed into different subproblems. We
have l(u) > l(v) only if f(u) > f(v) or b(v) > b(u). The
probability that f(u) > f(v) is the same as the proof of
Lemma 4.2, but this time using Lemma 5.2. The case
that b(v) > b(u) is symmetric, which gives the total
probability of (u, v) becoming broken during this call to
be 2 lg(|V |)/K.

5.4.2 Bounding the Probability that An Edge
Crosses Subproblems The analysis here is analogous

to Section 4.2. The main difference is that here we
consider the number of active vertices in both directions,
not just predecessors. For this section, we adopt the
same notion of level-` graphs as in Section 4.2, except
applied to the contracted graphH instead of the original
graph G. Note that H`

v is the empty graph if v is no
longer part of a recursive subproblem, which can now
also occur if v is marked for contraction before the `-th
level of recursion.

This first lemma says that vertices do not get closer
together, i.e., no new relationships are created, when
recursing. Consequently, it is sufficient to argue that
a constant fraction of related vertices are likely to be
knocked out.

Lemma 5.4. Consider any vertex v and its level-(`−1)
and level-(`) subgraphs H`−1

v and H`
v, respectively. For

any vertex x and distance d, if x 6�d v in H`−1
v , then

x 6�d v in H`
v. Similarly, if v 6�d x in H`−1

v , then v 6�d x
in H`

v.

Proof. The distances in the graph can only decrease if
edges become satisfied, new edges are incorporated, or if
vertices are contracted. None of these occurs within the
scope of recursive subproblems — the relative ordering
within each subproblem is unchanged, and contraction
only occurs between iterations.

The remainder of the section focuses on the number
of active vertices, except we now consider both prede-
cessors and successors.

Definition 5.1. A vertex x is a level-` active suc-
cessor of v if x 6= v and v �dmax x in H`

v, where
dmax = K(λ− `) is the maximum distance for this level
of recursion. Notice this definition is symmetric to the
level-` active predecessors of v and similarly, v is not
an active successor of itself.

Consider any edge (u, v) that is violated at the
start of the recursive algorithm. Observe that if v has
no level-` active predecessors, then either (u, v) falls
within a group marked for contraction, or (u, v) crosses
a subproblem boundary.

The analysis differs here from topological sort be-
cause the subproblem derives from both predecessors
and successors. In particular, the label l(v), for a ver-
tex v, is based on whether the forwards or backwards
search dominates. Our claim here is that the sum of
the number of active predecessors and active successors
decreases by a constant factor in each level of recursion
with constant probability.

Lemma 5.5. Consider any vertex v and level ` of recur-
sion. Let A and A′ be the set of level-` and level-(`+1),

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2066

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

respectively, active predecessors of v. Let D and D′ be
the set of level-` and level-(` + 1), respectively, active
successors of v. Let η = |A ∪D|, and η′ = |A′ ∪D′|.
Then Pr [η′ ≤ (7/8)η] ≥ 1/6.

Proof. Consider the level-` call to RecurSCC on graph
H`
v. Let d be the distance selected. Let Ad =

A(H`
v, v, d)\ {v} be the set of d-hop predecessors of v in

H`
v, excluding v itself, and let ad = |Ad|. Similarly, let

Dd = D(H`
v, v, d)\ {v} be v’s d-hop successors. Let rd =

|Ad ∪Dd| be the total number of d-hop related vertices,
in both directions, excluding v. For the remainder of the
proof, assume without loss of generality (by symmetry)
that |Ad| ≥ |Dd|, and hence ad ≥ rd/2.

Since d ≤ dmax, we have Ad ⊆ A and Dd ⊆ D
and hence rd ≤ η. By Lemma 5.4 and the fact that
distances decrease with each level of recursion, A′ ⊆ Ad
and D′ ⊆ Dd. It suffices to show that, with probability
at least 1/6, at least ad/4 of the vertices in Ad are
not in H`+1

v . Assuming this outcome occurs, we have
η′ = |A′ ∪D′| ≤ |Ad ∪Dd| − ad/4 = rd − ad/4 ≤
(7/8)rd ≤ (7/8)η as desired.

Let x be a random variable denoting the vertex
in Ad ∪ Dd ∪ {v} with highest priority. Consider the
random process as follows: first toss a weighted coin to
determine if x is in Ad ∪ {v} or Dd\Ad, then select a
vertex uniformly at random from the appropriate set.
Since |Ad| ≥ |Dd|, the former occurs with probability at
least 1/2. The remainder of the proof thus conditions
on the assumption that x ∈ Ad ∪ {v}, with the final
success probability multiplied by 1/2.

The remainder of the proof is similar in setup to
Lemma 4.4, but the knocks-out relation and specific
cases are more complicated. We say that x knocks out
y if x 6�d y or if both x �d y and y �d x. Once more,
it suffices to prove the following two claims: (1) If x
knocks out y, then y 6∈ H`+1

v , and (2) With probability
at least 1/3, x knocks out at least ad/4 vertices from Ad.

Claim 1. We start by noting that by assumptions
on choice of x, f(v) = ρ(x). Moreover, since ρ(x) is the
highest priority v observes in either direction, b(v) ≤
ρ(x). A necessary condition for y ∈ H`+1

v is thus that
f(y) = ρ(x) and b(y) ≤ ρ(x). If b(y) = f(y) = ρ(x),
however, then y is marked for contraction and not part
of H`+1

v . So y ∈ H`+1
v also requires b(y) < ρ(x).

By definition, if x knocks out y then either x 6�d y,
or both x �d y and y �d x. If x 6�d y, then f(y) 6= ρ(x),
implying that y 6∈ H`+1

v as discussed above. Suppose
instead that x �d y and y �d x. Then f(y) ≥ ρ(x) and
b(y) ≥ ρ(x). Again, this implies that y 6∈ H`+1

v because
b(y) 6< ρ(x).

Claim 2. If x 6�d y, then x knocks out y; likewise
if y 6�d x, then y knocks out x. If x �d y and y �d x,
then x and y knock out each other. Therefore, either x

knocks out y, y knocks out x, or both. Moreover, x = v
knocks out every vertex as in this case f(v) = b(v) =
ρ(v), and hence H`+1

v is the empty graph. The total
number of pairs x ∈ Ad ∪ v and (y 6= x) ∈ Ad for which
x knocks out y is at least

(
ad
2

)
+ ad = ad(ad + 1)/2.

The rest of the claim is that same as Lemma 4.4, which
completes the proof.

The preceding lemma indicates that each level
of recursion is likely to reduce the total number of
active vertices by a constant factor. The following
lemma applies this lemma across λ levels of recursion
to conclude that v is likely to be in its own subproblem,
or marked for contraction, before the recursion bottoms
out.

Lemma 5.6. Consider any vertex v and a complete
execution of the recursive algorithm. With probability
at least 1− 32 lg |V | /λ, v has no active predecessors at
the λ-th level of recursion.

Proof. Let Xj be a random variable denoting the num-
ber of levels ` for which the number of active prede-
cessors and active successors of v falls in the range
[(7/8)j+1, (7/8)j) · |V |, for integer j. When j ≥
log8/7 |V |, the high end of the range is strictly less
than 1/ |V | · |V | = 1, meaning that v has no ac-
tive predecessors or active successors remaining. Let
X =

∑
j<log8/7|V |

Xj . If X < λ, then at or before the

the λ-th level of recursion, v has no active predeces-
sors. Our goal is thus to argue that this event is likely
to occur. Lemma 5.5 says that the number of rounds
necessary to get a (7/8) reduction is at most 6 in expec-
tation. Thus E[Xj] ≤ E[Xj |Xj ≥ 1] ≤ 6. By linearity
of expectation, E[X] ≤ 6 log8/7(|V |) < 32 lg(|V |). By
Markov’s inequality, Pr [X ≥ λ] ≤ 32 lg(|V |)/(λ).

5.4.3 Edges are Likely to Become Satisfied We
have argued that in each execution of the recursive
algorithm, a particular edge (u, v) is unlikely to become
broken, and moreover that v is likely to either be in
its own subproblem or marked for contraction. The
implication is that if both favorable outcomes occur,
the edge (u, v) either cross subproblem boundaries and
becomes satisfied, or both u and v are contracted with
each other and the edge disappears. Completing this
argument again requires monotonic progress on satisfied
edges. The following lemma says that satisfied edges
never become violated later.

Lemma 5.7. Consider an execution of the recursive
algorithm RecurSCC. If an edge (u, v) is satisfied at
the `-th level of recursion, then it remains satisfied at
all subsequent levels of recursion.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2067

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Proof by induction on the level of recursion.
Consider the call at the `th level of recursion, and
suppose that the edge (u, v) is satisfied at the start
of the call. The goal is to show that it remains
satisfied in the next recursive subproblem. Note that
once u and v fall in different subproblems (or the same
subproblem marked for contraction), their relative order
never changes.

We first claim that if l(v) ≥ l(u) and u and
v are in the same subproblem, then (u, v) remains
satisfied at the next level of recursion. To see that,
if l(v) > l(u), then sorting by label keeps the edge
satisfied. If l(v) = l(u) but (u, v) is satisfied initially,
then index (v) > index (u). Thus, breaking ties by index
keeps the edge satisfied. The remainder of the proof
thus focuses on showing that l(v) ≥ l(u).

Since (u, v) is satisfied, u �0 v. More importantly,
for all x, x �d u implies x �d v. Similarly, v �d x
implies u �d x. It follows that

(5.1) f(u) ≤ f(v) and b(u) ≥ b(v) .

To show l(v) ≥ l(u), we consider several cases.
Case 1: f(u) > b(u). Then l(u) = f(u). We have
f(v) ≥ f(u) > b(u) ≥ b(v), where the first and last
inequality follow Equation 5.1 and the middle one is by
assumption. Both vertices are assigned their forwards
label, and f(v) ≥ f(u), implying l(v) ≥ l(u).
Case 2: f(u) = b(u). Then u is assigned label
l(u) = −b(u) + 1/2. Similarly to the first case, we have
f(v) ≥ f(u) = b(u) ≥ b(v), implying f(v) ≥ b(v). If
f(v) > b(v), then l(v) = f(v), which is nonnegative and
hence larger than l(u) = −b(u) + 1/2. If f(v) = b(v),
then l(v) = −b(v) + 1/2. Since b(u) ≥ b(v), l(v) =
−b(v) + 1/2 ≥ −b(u) + 1/2 = l(u).
Case 3: f(u) < b(u). Then l(u) = −b(u). If f(v) > b(v),
then l(v) = f(v) > −b(u) = l(u), so l(v) > l(u). If
f(v) = b(v), then l(v) = −b(v) + 1/2. Since b(u) ≥ b(v)
from Equation 5.1, −b(v) ≥ −b(u), implying l(v) =
−b(v) + 1/2 ≥ −b(u) = l(u). If f(v) < b(v), then
l(v) = −b(v). Since b(u) ≥ b(v), l(v) ≥ l(u).

Lemma 5.8. Let (u, v) be any edge, and consider a com-
plete execution of RecurSCC followed by the contrac-
tion step with parameters λ ≥ 128 lg V and K ≥ 8λ lg V .
If (u, v) is violated initially, then with probability at least
1/2, (u, v) is not violated at the end (either because it
is satisfied or removed from the graph). If (u, v) is not
violated initially, then with probability 1 it is also not
violated at the end.

Proof. By Lemma 5.7, a satisfied edge always remains
satisfied. It may, however be removed from the graph in
the contraction step. Nevertheless, it can never become

violated. The remainder instead focuses on the case
that an edge (u, v) is initially violated.

Let A be the event that (u, v) is violated at the
end of the execution. Let B be the event that the
edge breaks at some level of recursion, and let C be the
event that the two endpoints u and v are in the same
level-λ subproblem. If neither B nor C occurs, then
either the edge crosses properly ordered subproblems at
some level, or u and v are marked for contraction. In
either case, (u, v) is not violated anymore. We thus have
Pr [A] ≤ Pr [B] + Pr [C] by a union bound.

By Lemma 5.6, Pr [C] ≤ 32 lg V/λ ≤ 1/4 for the
specified choice of λ. By Lemma 5.3, the probability
of breaking at any individual level is at most 2 lg V/K.
Taking a union bound across λ levels, we have Pr [B] ≤
2λ lg V/K ≤ 1/4 for the specified choice of K. Adding
these together gives total failure probability of at most
1/2.

5.4.4 Bounds on the Main Algorithm

Lemma 5.9. Only vertices that are strongly connected
are contracted.

Proof. Given vertices u and v that are contracted, we
will show that u and v are strongly connected. Since u
and v are contracted, it must be the case that f(u) =
b(u) = f(v) = b(v). There must be some vertex x such
that ρ(x) = f(u). It could be the case that either u or
v is vertex x. Since ρ(x) = f(u) = b(u) = f(v) = b(v),
x �d u, x �d v, u �d x and v �d x. Therefore x is
strongly connected to both u and v, which implies that
u and v are strongly connected.

We next prove Theorem 5.1, which states that
the algorithm topologically sorts the condensation of
the graph after d(c+ 2) lg V e executions with failure
probability at most 1/V c, for any c > 0.

Proof of Theorem 5.1. By Lemma 5.9, the algorithm
never performs any erroneous contractions. If the
algorithm terminates, it must therefore be the case
that the graph is topologically sorted, which is only
possible there are no cycles, i.e., if all strongly connected
components have been contracted.

Lemma 5.7 says that violated edges are never in-
troduced. Moreover, by Lemma 5.8, each violated edge
has a constant probability of being removed or becom-
ing satisfied. The rest of the proof is the same as The-
orem 4.1.

6 Conclusions

This paper has presented the first algorithm for topo-
logical sort and related problems that is I/O efficient
even for sparse graphs.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2068

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The main question remaining is whether the al-
gorithm can be improved to achieve an I/O cost
O(sort(E) · logc V), for c < 5. One of the logarith-
mic factors arises from the fact that the number of dis-
tances K is large (i.e., K = Θ(log2 V)). Another arises
from the fact that distance ranges do not overlap at
each level of recursion. We suspect that at least one of
these logarithmic factors can be removed, yielding c = 4
or potentially even c = 3. Achieving c < 3, however,
seems difficult. Inherent in the approach are at least
two logarithmic factors: the number of iterations and
the number of levels of recursion. Moreover, reducing
the number of distances to K = O(1), which would be
necessary to get c < 3, would require some significant
new ideas.

Another interesting question is whether randomiza-
tion is necessary for these problems. Randomization
plays a key role in our algorithm, but there may be al-
ternative approaches.

Acknowledgements This research was supported in
part by NSF grants CCF-1314633, CCF-1617727, and
CCF-1718700.

References

[1] James Abello, Adam L. Buchsbaum, and Jeffery West-
brook. A functional approach to external graph al-
gorithms. In Proceedings of the 6th Annual European
Symposium on Algorithms, pages 332–343, 1998.

[2] Alok Aggarwal and Jeffrey Vitter. The input/output
complexity of sorting and related problems. Commu-
nications of the ACM, 31(9):1116–1127, 1988.

[3] Deepak Ajwani, Adan Cosgaya-Lozano, and Norbert
Zeh. Engineering a topological sorting algorithm for
massive graphs. In Proceedings of the Meeting on
Algorithm Engineering & Expermiments, pages 139–
150, 2011.

[4] Lars Arge. The buffer tree: A new technique for opti-
mal I/O-algorithms. In Proceedings of the Workshop
on Algorithms and Data Structures, pages 334–345,
1995.

[5] Lars Arge, Gerth Stølting Brodal, and Laura Toma.
On external-memory MST, SSSP and multi-way planar
graph separation. Journal of Algorithms, 53(2):186–
206, 2004.

[6] Lars Arge, Ulrich Meyer, and Laura Toma. External
memory algorithms for diameter and all-pairs shortest-
paths on sparse graphs. In Prooceedings of the 31st
International Colloquium on Automata, Languages and
Programming, pages 146–157, 2004.

[7] Lars Arge and Morten Revsbæk. I/O-efficient contour
tree simplification. In Proceedings of the International
Symposium on Algorithms and Computation, pages
1155–1165, 2009.

[8] Lars Arge, Laura Toma, and Norbert Zeh. I/O-efficient
topological sorting of planar dags. In Proceedings
of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 85–93, 2003.

[9] Adam L. Buchsbaum, Michael Goldwasser, Suresh
Venkatasubramanian, and Jeffery R. Westbrook. On
external memory graph traversal. In Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 859–860, 2000.

[10] Yi-Jen Chiang, Michael T. Goodrich, Edward F.
Grove, Roberto Tamassia, Darren Erik Vengroff, and
Jeffrey Scott Vitter. External-memory graph algo-
rithms. In Proceedings of the Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 139–
149, 1995.

[11] Rezaul Alam Chowdhury and Vijaya Ramachandran.
External-memory exact and approximate all-pairs
shortest-paths in undirected graphs. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 735–744, 2005.

[12] Edith Cohen, Amos Fiat, Haim Kaplan, and Liam
Roditty. A labeling approach to incremental cycle
detection. CoRR, abs/1310.8381, 2013.

[13] Don Coppersmith, Lisa Fleischer, Bruce Hendrickson,
and Ali Pinar. A divide-and-conquer algorithm for
identifying strongly connected components. Technical
Report RC23744, IBM Research, 2005.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
2nd edition, 2001.

[15] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and
Amnon Nissenzweig. Sparsification—a technique for
speeding up dynamic graph algorithms. Journal of the
ACM, 44(5):669–696, 1997.

[16] Jeremy T. Fineman. Nearly work-efficient parallel
algorithm for digraph reachability. In Proceedings of
the 50th Annual ACM SIGACT Symposium on the
Theory of Computation, pages 457–470, 2018.

[17] Jelle Hellings, George HL Fletcher, and Herman
Haverkort. Efficient external-memory bisimulation on
dags. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, pages
553–564, 2012.

[18] Vijay Kumar and Eric J. Schwabe. Improved algo-
rithms and data structures for solving graph prob-
lems in external memory. In Proceedings of the 8th
IEEE Symposium on Parallel and Distributed Process-
ing, pages 169–176, 1996.

[19] Anil Maheshwari and Norbert Zeh. I/O-efficient planar
separators. SIAM Journal on Computing, 38(3):767–
801, 2008.

[20] Kurt Mehlhorn and Ulrich Meyer. External-memory
breadth-first search with sublinear I/O. In Proceed-
ings of the 10th Annual European Symposium on Algo-
rithms, pages 723–735, 2002.

[21] Ulrich Meyer and Norbert Zeh. I/O-efficient undi-
rected shortest paths. In Proceedings of the 11th An-
nual European Symposium on Algorithms, pages 434–

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2069

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

445, 2003.
[22] Ulrich Meyer and Norbert Zeh. I/O-efficient undi-

rected shortest paths with unbounded edge lengths. In
Proceedings of the 14th Annual European Symposium
on Algorithms, pages 540–551, 2006.

[23] Kameshwar Munagala and Abhiram Ranade. I/O-
complexity of graph algorithms. In Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 687–694, 1999.

[24] Robert Tarjan. Depth first search and linear graph
algorithms. Siam Journal on Computing, 1(2):146–
160, 1972.

[25] Jeffrey D. Ullman and Mihalis Yannakakis. The in-
put/output complexity of transitive closure. Annals of
Mathematics and Artificial Intelligence, 3(2):331–360,
1991.

[26] Jeffrey Scott Vitter. Algorithms and Data Structures
for External Memory. 2008.

[27] Norbert Zeh. I/O-efficient graph algorithms. http://

cs.au.dk/~large/ioS05/Znotes.pdf. Accessed: 04-
06-2018.

[28] Zhiwei Zhang, Jeffrey Xu Yu, Lu Qin, Lijun Chang,
and Xuemin Lin. I/O efficient: Computing SCCs in
massive graphs. The VLDB Journal, 24(2):245–270,
2015.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2070

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

28
.8

4.
12

5.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 18
 17
 18

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 18
 0
 1

 1

 HistoryList_V1
 qi2base

