
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315864648

LRCRYPT: Leakage-Resilient Cryptographic System (Design and

Implementation)

Conference Paper in Lecture Notes in Computer Science · March 2017

DOI: 10.1007/978-3-319-56549-1_20

CITATIONS

0
READS

145

5 authors, including:

Ruoqing Zhang

The University of Hong Kong

10 PUBLICATIONS 31 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ruoqing Zhang on 25 January 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/315864648_LRCRYPT_Leakage-Resilient_Cryptographic_System_Design_and_Implementation?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315864648_LRCRYPT_Leakage-Resilient_Cryptographic_System_Design_and_Implementation?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruoqing-Zhang?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruoqing-Zhang?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Hong-Kong?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruoqing-Zhang?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruoqing-Zhang?enrichId=rgreq-cfd5e8e733224b779ac8c77cf7f57e97-XXX&enrichSource=Y292ZXJQYWdlOzMxNTg2NDY0ODtBUzo1ODY3MTQzOTc1NzMxMjVAMTUxNjg5NTAyMTU4Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

LRCRYPT: Leakage-Resilient Cryptographic
System (Design and Implementation)

Xiaoqi Yu1, Nairen Cao2, Gongxian Zeng1, Ruoqing Zhang1,
and Siu-Ming Yiu1(B)

1 Department of Computer Science,
The University of Hong Kong, Hong Kong, China
rpyxqi@gmail.com, naksi@connect.hku.hk,

rockyzhanghku@gmail.com, smyiu@cs.hku.hk
2 Department of Computer Science,

Georgetown University, Washington, D.C., USA
nc645@georgetown.edu

Abstract. Due to the advancement of side-channel attacks, leakage-
resilient cryptography has attracted a lot of attention in recent years.
Many fruitful results have been proposed by researchers. Most, if not
all, of these results are theoretical in nature. Not much has been done
to realize these schemes for practical use. In this work, we design and
provide a leakage-resilient cryptographic system LRCRYPT with pro-
gramming interfaces for users to build leakage-resilient cryptographic
applications. LRCRYPT consists of a few fundamental building blocks
that perform leakage-resilient public-key encryption, leakage-resilient sig-
nature, and leakage-resilient secret-key encryption, which can also be
extended to many existing leakage resilience cryptographic primitives.
We have conducted both a security analysis and a performance evalua-
tion on LRCRYPT . To our knowledge, LRCRYPT is the first to work
in this domain.

1 Introduction

Leakage-resilient Cryptography. Traditionally, cryptographic primitives are
considered as mathematical objects with a well-defined interface between the
primitives and the user/adversary. The primitives are provably secure in common
sense: if an efficient adversary can break a primitive π with significant probability,
there exists a simulator that can solve a known hard problem P . By the assump-
tion that P is hard, it implies that there is no efficient adversary for π.

However, the actual interactions between the primitive and the adversary
may be influenced by its implementations and physical devices in real-world
applications. In such cases, extra information about the primitive may be leaked
to the adversary, which accumulatively may lead to the attack on the primitive
that is proved secure. Main types of these “side-channel” attacks are elaborated
below. The literature dealing with the circumstance that can capture adversaries
who execute the attacks through the implementations of a primitive is called
Leakage-resilient Cryptography.
c© Springer International Publishing AG 2017
D. Choi and S. Guilley (Eds.): WISA 2016, LNCS 10144, pp. 233–244, 2017.
DOI: 10.1007/978-3-319-56549-1 20

234 X. Yu et al.

Types of Side Channel Attacks. In practice, there are numerous attacks
by side-channels, i.e. time attacks, power dissipation, cold-boot attacks [15–17].
Followings are some main types of attacks that fall into the broader class of such
attacks.

– Power Analysis Attacks: This type of attack is executed by measuring the
power consumption of a cryptographic hardware, which is stated in Kocher
et al. [16].

– Timing Attacks: When the adversary uses the running time of a protocol as
extra information, it may achieve partial knowledge of the implementation to
derive information about the secret key.

– Fault Injection Attacks: This type of attacks are carried out in the ways that
the adversary enforces the device to run an erroneous operation, which might
leak information for the secret key.

– Memory Attacks: Proposed by Halderman et al. [15], Memory Attacks stem
from the property that DRAM will hold the states for some period without
the power of refresh. Hence, the adversary can read the content of parts of
the cells and retrieve some information about the secret key as the examples
presented in Halderman et al. [15].

Hardware-Level Countermeasures. In terms of countermeasures, one may
try to modify the implementation or secure hardware, which is easy to be restrict-
edly secure against a certain type of attack. In other words, the hardware-level
solutions target a specific side-channel attack, which should be revised once a
more efficient side-channel attack is captured.

Software-Level Solutions. On the line of software-level solutions, researchers
try to capture many possible side-channel adversaries and extract the details of
the hardware and implementation, which is commonly represented as a leakage
function f . By the definition of a leakage function family F , the theoretical
constructions work under various models and security targets.

Since the detailed models are out of the scope of this paper, we only introduce
the main existing models in the followings: computation-leak-information by
Micali and Reyzin [15], bounded-memory model considered by [3], continual
memory leakage (CML) [18], auxiliary-input model [24].

Difficulties for Practical System. Hardware-level measures are impractical
to be integrated into a platform since the difficulties stem from numberous attack
types and devices, while software-level solutions seem better to fit the require-
ments to build a general platform that can be applied in real-world applications.
Even so, it is non-trivial to extend an existing cryptographic system to a leakage-
resilient one since the difficulties inherent from the complexities of the attack
types and various models. Besides, only the schemes that are built under stan-
dard models and simple assumptions can be candidate building blocks for such
a practical system. To the best of our knowledge, no existing leakage-resilient
cryptographic systems are found until now. In this work, we aim to integrate
the software-level results to build a practical system that can be easily applied

LRCRYPT 235

in many cryptographic platforms, which can defend the potential attacks caused
by side-channel information.

1.1 Our Results and Techniques

Overview of Results. In this work, we explore the solutions to build a general
leakage-resilient cryptographic system that can be applied in various real-world
applications. It is easy to find that the main types of cryptographic applications
consist of public-key encryption, signature and secret-key encryption. Specifically,
our system begins with leakage-resilient public-key encryption, which is imple-
mented with an identity-based encryption. In addition, we extend it to a leakage-
resilient signature construction. Furthermore, by applying leakage-resilient secret
sharing layer, we design a general method to extend the existing secret-key encryp-
tion primitives to a leakage-resilient secret-key encryption. In this paper, we call
our system LRCRYPT , whose details are postponed to Sect. 3. In the followings
we outline several key observations for the detailed designs.

Leakage-resilient Public-key Encryption (LRPKE): To build a practical
leakage-resilient public-key encryption based on the software-level solutions, we
hope that the construction is secure based on simple assumption and standard
model, along with efficiency compared to the original systems. With regards
to these goals, we find that an identity-based hash proof system (IBHPS) in
Alwen et al. [4] can be used to construct public-key and identity-based encryp-
tion schemes in Bounded Retrieval Model (BRM). In addition, the techniques in
Chow et al. [11] showed how to build a leakage-resilient identity-based encryp-
tion (LRIBE) from IBHPS. The advantages of these techniques include but
not limited to simper security definitions and no need to deal with the leakage
details. On a very high level, one can construct a desired LRIBE by combin-
ing an IBHPS with a randomness extractor (see [14]). Thus we will construct
a LRIBE via IBHPS as the LRPKE building blocks since it can be easily
applied to construct a general public-key encryption, and can also be extended
to a secure signature scheme.

Leakage-resilient Signature (LRSIG) from LRIBE : Provided that IND-
CCA secure IBE implies secure public-key signature [8], we also expand
LRCRYPT to cover the domain of leakage-resilient signature (LRSIG) almost
freely.

Leakage-resilient Secret Key Encryption (LRSKE): Compared to tradi-
tional cryptography that assumes perfect secrecy of the secret key, leakage-
resilient schemes build on the condition that leakage on a fraction of secret
key exists. We will apply the secret sharing method on the secret key which will
be updated accordingly [13] to avoid a significant fraction of the secret key to be
derived by the adversary. Through this abstraction, we can extend it to various
secret key encryption constructions. We design a software-level layer that can
protect the secret key from being derived from the leaked informations, and be
updated efficiently, through which we can achieve a secure LRSKE .

236 X. Yu et al.

1.2 Our Contributions

In the followings, we outline the contributions of this paper.

– LRCRYPT is among the first to explore a practical leakage-resilient platform.
– We build a library with programming interfaces for cryptographic applications

consisting of LRPKE , LRSIG, LRSKE .
– We build an extended leakage-resilient layer CLRS, which derives from

leakage-resilient secret sharing schemes [13], to be applied in other crypto-
graphic primitives.

– As independent interest, we develop a pairing based matrix calculation build-
ing block PIM, which can be applied to matrix operations on the group ele-
ments and big integers.

2 Preliminaries

Identity-Based Encryption (IBE). IBE [21] is public-key encryptions based
on users’ identities, which can solve difficulties of the public-key deployment
[5][9]. IBE scheme consists of four PPT algorithms (Setup, KeyGen, Enc, Dec).

1. (MPK ,MSK) ← Setup(1λ): The Setup algorithm takes the security parame-
ter λ as input, and output the (MPK ,MSK) key pair. MPK is included in
public parameter, while MSK is held by the authority as a secret message.

2. SK ID ← KeyGen(ID ,MSK): The KeyGen algorithm is run by the key gener-
ator authority to generate the secret key SK ID according to the user’s id.

3. C ← Enc(ID ,M): The Enc algorithm outputs the ciphertext C with the input
of user ID and plaintext M .

4. M ← Dec(CSK ID): Decrypt algorithm with ciphertext C and secret key
SK ID outputs plaintext M .

Identity-Based Hash Proof System (IBHPS). In Chow et al. [11], they
proposed a practical LRIBE system built from the IBHPS with a random
extractor and designed invalid ciphertext in the encapsulation phase of IBHPS
system. Particularly, they applied this technique to BBIBE [7], WIBE [22],
LWIBE [19] respectively. The most encouraging results are that the overhead
for LRIBE is linear of their counterpart in terms of the key calculations such
as exponentiation on group elements and pairing operations. IBHPS consist of
five PPT algorithms:

1. (MPK ,MSK) ← Setup(1λ): Setup generates the master public-key and mas-
ter secret key of the system with the input of security parameter λ.

2. SK ID ← KeyGen(ID ,MSK): KeyGen outputs a secret key corresponding to
the user ID .

3. (C , k) ← EnCap(ID): The valid encapsulation algorithm creates a valid
ciphertext C paired with an encapsulation key.

4. C ← EnCap∗(ID): The invalid encapsulation algorithm outputs an invalid
ciphertext to the given id.

LRCRYPT 237

5. k ← DecCap(C,SKID): The deterministic decapsulation algorithm recovers the
encapsulation key with the input of ciphertext C and secret key SKID.

Continual-Leakage-Resilient Sharing (CLRS). Following is the description
of CLRS.

1. (sh1, sh2) ← ShareGen(1λ,M): The generation algorithm outputs two shares
sh1 and sh2 with inputs security parameter and message M .

2. sh′
b ← Updateb(shb): The randomized update algorithm updates the current

version of share shb to sh′
b.

3. M ← Reconstruct(sh1, sh2): The reconstruction algorithm will output the
secret message M with inputs of secret shares.

3 System Design

LRCRYPT is built on the existing arithmetic library GMP [2], pairing-based
cryptographic library PBC [20], and Openssl [1]. Based on GMP [2] and PBC
[20], we build the IBHPS layer, which is the basic structures for LRIBE and
hence LRSIG. In addition, CLRS [13] works as the leakage-resilient secret shar-
ing layer to blind the secret key and efficiently update the secret key of the
existing cryptographic primitives. As independent interest, PIM is designed
for the system that utilises matrix based on group elements or the big integer in
GMP [2].

Figure 1 depicts the system architecture of LRCRYPT and shows the inter-
actions between the layers. Based on the basic libraries is our Develop layer, which
is the key components of LRCRYPT . Precisely, Develop consists of LRPKE and
LRSIG both of which are built on IBHPS, PIM, and LRP. Assumed that P
is the cryptographic primitives. The topmost one is the Application layer, which
provides the programming interfaces of LRCRYPT for the users.

In LRIBE , we implement the system based on IBHPS, consisting of
leakage-resilient BBIBE [7], leakage-resilient WIBE [22], and leakage-resilient
LWIBE [19]. After initialisation, users will obtain the corresponding secret keys
and call the encryption or decryption algorithms as the normal identity-based
encryption system.

To begin with LRP, users first initialise parameters of the CLRS layer. Fol-
lowing that, a cryptographic encryption primitive, i.e. the secret key encryption
DES, has to be initialised as well. Then LRP is called to build LRDES by
adopting the CLRS as the secret key encapsulation layer that can blind the
protected message and update it accordingly.

3.1 Leakage Resilient Public-Key Encryption (LRPKE)

IBHPS is regarded as a special IBE in the circumstance that there are many
valid secret key SK ID for given identity ID , and also valid and invalid cipher-
texts. Even given SK ID , a random valid ciphertext C is indistinguishable from

238 X. Yu et al.

Fig. 1. System architecture

a random invalid one C ′. Moreover, a valid ciphertext C decrypts in coincidence
with SK ID while an invalid ciphertext C ′ decrypts to a random value R′. To
decrypt a valid ciphertext C , it will output a value R that is indistinguishable
from a value that has |R| − l bits of entropy. In this case, LRIBE via IBHPS
with a randomnessextractor. Luckily, the extractor can be implemented by apply-
ing the existing random functions designed in the lower libraries PBC and GMP.

3.2 Leakage-Resilient Signature (LRSIG)

IND-CCA IBE implies a public-key signature scheme that is existentially
unforgeable against a chosen message attack [8]. Therefore, we build a leakage-
resilient public-key signature scheme from LRIBE . Intuitively, the master secret
key for IBE scheme I = (SetupI,KeyGenI,EncI,DecI) is set as secret key of the
signature scheme S = (SetupS,SignS,VerS), and the public-key for S is included
in the public parameters for I. Supposed that identity ID = M (M is set as input
message), the decryption key for ID works as the signature σ on a message M .
In order to verify a signature σ, the verifier simply chooses a random message
M̄ , then encrypt M̄ with the public-key ID = M . Then in the Verify process, it
tries to decrypt it using the signature on M̄ as the decryption key. If decryption
succeeds, Verify returns pass, else reject. Hence given I and S, we can build the
leakage-resilient signature scheme LRSIG π = (Setup,Sign,Verify).

3.3 Leakage-Resilient Primitive (LRP)

Without loss of generality, we assume that the encryption primitive P = (SetupP ,
KeyGenP , EncP , DecP). The difference of leakage-resilient cryptography is built
on the assumption that some side-channel information will be leaked through
implementation and devices, thus we figure out some efficient approaches to

LRCRYPT 239

limit the probability that the secret key of the encryption scheme to be derived
from such dangerous information. Given CLRS scheme C = (SetupC , ShareGenC ,
UpdateC , ReconstructC) and P, we describe the leakage-resilient encryption
scheme E = (Setup, KeyGen, Enc, Dec) in the followings.

1. PP ← Setup(1λ): This algorithm takes security parameter λ as input, and
calls two Setup algorithms in both E and P, then includes the public para-
meters in both algorithms to the output PP .

2. sh ← keygen(PP): This algorithm calls P ′s KeyGen to get usk , then it takes
this usk as secret share and runs ShareGen(1λ, Φ(usk)), where Φ is a map
from the group usk to the group M and it’s not difficult to find its inverse
Φ−1 in polynomial time. Then output the two shares sh = (sh1, sh2) as user’s
secret key.

3. C ← Enc(P, sh): Enc takes plaintext P and secret key sh, then calls EncP in
the same way, and outputs ciphertext C .

4. (M ,⊥) ← Dec(sh1, sh2,C): This algorithm firstly calls Reconstruct(sh1, sh2)
of CLRS and gets Φ(usk), then computes usk and runs Dec and outputs the
plaintext M or ⊥ if decryption fails.

3.4 Pairing and Big Integer Based Matrix (PIM)

As independent interest, we abstract the matrix operations over group ele-
ments and develop a component called Pairing/Integer Matrix (PIM), which
is designed for the matrix and list operations for abundant matrix operations.
Precisely, PIM is built directly on a library of GMP [2] and PBC [20]. PIM is
not only available as an integrated component in LRCRYPT but also aims to
provide other systems with common matrix calculations based on cryptographic
group elements and big integers. To our knowledge, we are among the first to
demonstrate such a calculation library. IML [10], which is based on GMP [2]
library, cannot be applied to the group elements.

3.5 Programming Interfaces

In LRCRYPT , we provide abundant programming interfaces that allow users
to build it in a leakage-resilient cryptographic application. In Table 1, we list the
parts the programming interfaces of our system, and complete interface descrip-
tion will be found in our Github project. In LRIBE and LRSIG, we can set
the parameter TY PE in range (1, 3) as in the subtypes of IBE types settings
as BBIBE , LWIBE , and WIBE .

3.6 Security Parameter and Leakage Parameter

Leakage parameter l is defined as the amount of bits leaked on secret key over
the total size of the secret key, in particular, l = |leakage info|/|secret key|.
In terms of choice for the curve in LRCRYPT , we initialise the group by

240 X. Yu et al.

Table 1. Programming interfaces

LRIBE (PP ,MSK) ← Setup(1λ, TY PE) TY PE ranges from 1–3

SK ← KeyGen(PP ,MSK , ID)

C ← Enc(PP ,MSK ,SK ,M)

M ← Dec(PP ,MSK ,SK ,C)

LRSIG (PP ,MSK) ← Setup(1λ,SK ,TYPE) TY PE ranges from 1–3, MSK = SK

σ ← Sign(PP ,MSK ,M)

(accept, reject) ← Verify(PP,msk, σ)

LRP (PP) ← Setup(1λ,SK)

sh ← KeyGen(PP)

C ← Enc(P, sh)

P ← Dec(C , sh)

PIM mtr ← Init(SIZE R, SIZE C, INFO E) initialise matrix mtr with size R ∗ C

Assigning functions

Arithmetic calculation Add/Sub/Mul/Pow(mtrout,mtr1,mtr2)

Matrix property calculation Kernel,Xor

A-TY PE, which is 512-bit length of the group order. Without loss of gener-
ality, we set leakage parameter as l = c × λ, where c is denoted as the leakage
ratio and c ∈ (0, 1). In the subtype of LRIBE-BB and LRIBE-W [12], the
leakage rate is 1

3 , while it is 1
9 for the LRIBE-LW type [11]. Assumed that

the size of key space is 2μ, then the system will operate on the message space
M = (0, 1)ν , where ν satisfies v ≤ μ − 2log(1/ε) − 1. LRIBE-LW structure is
built from the composite order group. We denote length of the composite order
N = 1024 bits, where N = p1 × p2 × p3(p1, p2, p3 are all primes).

4 Performance Analysis

In terms of performance evaluation, we mainly focus on the followings:

Running Time: As general, we will record running time of the key algorithms
of the system, which is the prominent part of the performance evaluations.

Blowup: In order to achieve leakage-resilience, we need to operate extra oper-
ations than their counterparts. Intuitively, the blowup is defined as the ratio of
the time cost in the algorithms of leakage-resilient settings over the non-leakage-
resilience baseline. Our goal is to build the system that can achieve comparative
blowup and leakage-resilience.

4.1 System Analysis

Efficient Pairing Calculation Overhead. Since pairing calculation e(g1, g2)
that maps from group G1 G2 to GT is time-consuming, we will store the pairing

LRCRYPT 241

result in private memory after the setup of the system in order to save running
time when the number of pairings is relatively large by reading an element instead
of calculating the pairing.

Efficient for Large Scale. Although LRP is not necessarily more efficient than
some existing leakage resilient secret key constructions [6], LRP will outperform
its counterpart in terms of large scale. Since we only have to initialise the CLRS
layer once and apply it in the secret key encryptions for multiple times. In this
domain, the blowup for leakage-resilient will be significantly lower in average.
Therefore, our system achieves significant improvements for large-scale calcula-
tions, which is common nowadays.

4.2 Security Analysis

In this section, we demonstrate the security analysis of the main building blocks
for LRCRYPT .

Security of Leakage-Resilient Signature: Through the constructions in
Sect. 3, we can easily conclude that if there exists an adversary A that can
break the signature scheme π, we can construct a simulator B that breaks the
security of LRIBE system with non-trivial probability in the defined security
model.

LRSKE from CLRS: Denoted that P is a cryptographic primitive and usk
is the user’s secret key in P. At the first step, we recap the CLRS C = (ShareGen,
Update, Reconstruct).

Now we discuss the definition of the security for LRP. Particularly, the secu-
rity model is a split-state model [23], which means the adversary can only learn the
secret information in a split way. Under this model, we design the system of generic
leakage resilient cryptographic scheme with CLRS. More precisely, a user in LRP
has secret key sk = sh = (sh1, sh2), and the adversary can only get the leakage
information of f(sh1) and f(sh2), where f ∈ F is the leakage function the adver-
sary can access. However, the adversary cannot get any information of f(sh1, sh2)
simultaneously. From the results of [23], we can infer that our LRSKE scheme built
in this way is secure in the split-state model. Then we apply this leakage-resilient
layer in the secret key primitive. e.g. DES in our system.

4.3 Implementation Results

We do the implementations in the windows system of Intel(R) Xeon(R) E7-2830
CPU@3.40 GHz configured with GMP and PBC libraries. We build our system
with C/C + + program, and output the library LRCRYPT for development in
some cryptographic systems which are sensitive to side-channel attacks. In this
section, we will present the implementation results for performance evaluation.
In addition, we also maintain our project in Github, which will be public in the
coming future.

LRIBE Results. With varied parameters, we collect the running time for var-
ious subtypes of LRIBE (Fig. 2), consisting of a four algorithms Setup, KeyGen,

242 X. Yu et al.

Enc, Dec. LRIBE-BB is the simplest version with selectively secure [11] which
only consists of constant number of pairing calculations. While LRIBE-W is the
compromising one since its complexity of the group multiplication is linear in
the size of the identity input id. However, the composite version LRIBE-LW
subtype is most time-consuming. Composite order group operations suffer from
the efficiency constraint compared to its counterparts. However, it can not be
always transferred to the prime order groups, since the security of the scheme
inherits directly from the composite order group.

Fig. 2. LRIBE results Fig. 3. LR-BBIBE vs BBIBE

Fig. 4. PIM results Fig. 5. Blowup for LRIBE

LRIBE and IBE Results. In terms of practical requirements, we compare our
LRIBE subtype with the original identity-based encryption scheme in Fig. 3.
Specifically, we implement one example by both calling the programming inter-
face of LRCRYPT and original BBIBE [7] scheme. As shown in Fig. 5, the
curves depict the cost for LRIBE and IBE share the similar trend, though run-
ning time for LR-BBIBE is about 1.3 times of BBIBE [7]. As the increase of

LRCRYPT 243

running number, the average blowup for Setup decreases since the extra cost
for CLRS will be divided to numerous process, resulting in lowering blowup for
each round.

PIM Results. To evaluate the performance of PIM layer, we choose the opera-
tions of matrix addition and multiplication with varying dimensions 20∗ 20, 50 ∗
50, 100 ∗ 100, and execute the calculations for 50, 100, 1000 times to lower the
error bar. As discussed in previous sections, we set the bit size of operation
element as 128 bits and present the results in Fig. 4.

In the experiments, we compare PIM results with the existing integer matrix
library called IML with large elements, and notice that running time of our
system is comparable with results of IML. Moreover, we also compare the results
for matrix with big integers and group elements. Without loss of generality, we
denoted Mz and Me as a matrix for bit integer and a matrix for group elements
respectively.

Acknowledgments. This work was supported in part by NSFC/RGC Joint Research
Scheme (N HKU 72913) of Hong Kong, Seed Funding Programme for Basic Research
of HKU (201511159034, 201411159142), and National High Technology Research and
Development Program of China (2015AA016008).

References

1. https://www.openssl.org/
2. https://gmplib.org/
3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and

cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 3

5. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key
Management-Part 1: General (revised). NIST special publication, Citeseer (2006)

6. Belaıd, S., Grosso, V., Xavier-Standaert, F.: Masking and leakage-resilient primi-
tives: one, the other (s) or both? (2014)

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

9. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). doi:10.1007/3-540-39200-9 16

10. Chen, Z.: https://cs.uwaterloo.ca/∼astorjoh/iml.html

https://www.openssl.org/
https://gmplib.org/
http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-39200-9_16
https://cs.uwaterloo.ca/~astorjoh/iml.html

244 X. Yu et al.

11. Chow, S.S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 152–161. ACM
(2010)

12. Conti, M., Di Pietro, R., Mancini, L.V., Mei, A.: (old) Distributed data source
verification in wireless sensor networks. Inf. Fusion 10(4), 342–353 (2009)

13. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: IEEE 52nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 688–697. IEEE (2011)

14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

15. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

18. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 6

19. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

20. Lynn, B.: PBC: the pairing-based cryptography library. http://crypto.stanford.
edu/pbc/

21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

22. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

23. Xiong, H., Zhang, C., Yuen, T.H., Zhang, E.P., Yiu, S.M., Qing, S.: Continual
leakage-resilient dynamic secret sharing in the split-state model. In: Chim, T.W.,
Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 119–130. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34129-8 11

24. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient
to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 9

View publication statsView publication stats

http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-642-19571-6_6
http://dx.doi.org/10.1007/978-3-642-11799-2_27
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/978-3-642-34129-8_11
http://dx.doi.org/10.1007/978-3-642-29011-4_9
http://dx.doi.org/10.1007/978-3-642-29011-4_9
https://www.researchgate.net/publication/315864648

	LRCRYPT: Leakage-Resilient Cryptographic System (Design and Implementation)
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Our Contributions

	2 Preliminaries
	3 System Design
	3.1 Leakage Resilient Public-Key Encryption (LRPKE)
	3.2 Leakage-Resilient Signature (LRSIG)
	3.3 Leakage-Resilient Primitive (LRP)
	3.4 Pairing and Big Integer Based Matrix (PIM)
	3.5 Programming Interfaces
	3.6 Security Parameter and Leakage Parameter

	4 Performance Analysis
	4.1 System Analysis
	4.2 Security Analysis
	4.3 Implementation Results

	References

