
Nearly Optimal Parallel Algorithms for Longest Increasing
Subsequence

Nairen Cao

caonc@bc.edu

Boston College

Boston, USA

Shang-En Huang

huangaul@bc.edu

Boston College

Boston, USA

Hsin-Hao Su

suhx@bc.edu

Boston College

Boston, USA

ABSTRACT

The paper presents parallel algorithms for multiplying implicit

simple unit-Monge matrices (Krusche and Tiskin, PPAM 2009) of

size 𝑛 × 𝑛 in the EREW PRAM model. We show implicit simple

unit-Monge matrices multiplication of size 𝑛×𝑛 can be achieved by

a deterministic EREW PRAM algorithm with 𝑂 (𝑛 log𝑛 log log𝑛)
total work and 𝑂 (log3 𝑛) span. This implies that there is a deter-

ministic EREW PRAM algorithm solving the longest increasing sub-

sequence (LIS) problem in𝑂 (𝑛 log2 𝑛 log log𝑛) work and𝑂 (log4 𝑛)
span. Furthermore, with randomization and bitwise operations,

implicitly multiplying two simple unit-Monge matrices can be im-

proved to 𝑂 (𝑛 log𝑛) work and 𝑂 (log3 𝑛) span, which leads to a

randomized EREW PRAM algorithm obtaining LIS in 𝑂 (𝑛 log2 𝑛)
work and𝑂 (log4 𝑛) span with high probability. In the regime where

the LIS has length 𝑘 = Ω(log3 𝑛), our results improve the span from

�̃� (𝑛2/3) (Krusche and Tiskin, SPAA 2010) and𝑂 (𝑘 log𝑛) (Gu, Men,

Shen, Sun, and Wan, SPAA 2023) to 𝑂 (log4 𝑛) while the total work
remains near optimal �̃� (𝑛).

CCS CONCEPTS

• Theory of computation → Design and analysis of algo-

rithms.

KEYWORDS

Longest increasing subsequence, Implicit simple unit-Monge matrix

multiplication, Parallel algorithm

ACM Reference Format:

Nairen Cao, Shang-En Huang, and Hsin-Hao Su. 2023. Nearly Optimal

Parallel Algorithms for Longest Increasing Subsequence. In Proceedings of
the 35th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’23), June 17–19, 2023, Orlando, FL, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3558481.3591078

1 INTRODUCTION

The longest increasing subsequence (LIS) problem is a classical prob-

lem in computer science, with many variants and applications such

as text editing and dynamic time warps [28, 29], genome sequence

alignments [5, 9, 10, 26], and quantum measurements [25]. Given

a sequence of 𝑛 numbers 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛), the goal is to find

This work was supported by NSF CCF-2008422.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9545-8/23/06.

https://doi.org/10.1145/3558481.3591078

the longest subsequence from 𝐴 such that its values are (strictly)

increasing. An 𝑂 (𝑛 log𝑛) time sequential algorithm is known, and

an Ω(𝑛 log𝑛) lower bound is also known under the comparison

model [11, 27]. In parallel settings, the earlier LIS algorithms fo-

cused on the Bulk-Synchronous Model [20, 21] and the Coarse-

Grained Multicomputer models [14, 30]. However, the focus of the

algorithms in these models lives in the regime that the number of

processors 𝑝 is much less than the input size 𝑛 (i.e., 𝑝 ≪ 𝑛). Their

results, when translated into the PRAM model, have either large

work (e.g.,𝑂 (𝑛1.5) in [20]) or large span (e.g., �̃� (𝑛2/3) span in [21]).

Very recently, Shen, Wan, Gu, and Sun [31] proposed the phase-
parallel framework solving dynamic programs whose parallel run-

time depends substantially on the dependency chain length
1
. As

a consequence, they proposed the first nearly work-optimal algo-

rithm that computes LIS with �̃� (𝑘) span, where 𝑘 is the length of

the LIS. This improves the results of Nakashima and Fujiwara’s algo-

rithm [24] from �̃� (𝑘2) span to �̃� (𝑘) span. Later, Gu, Men, Shen, Sun,

and Wan [15] further improved their LIS algorithm with𝑂 (𝑛 log𝑘)
optimal work and 𝑂 (𝑘 log𝑛) span.

However, given that a random permutation has its LIS length

Θ̃(
√
𝑛) with high probability [4, 12], the span of �̃� (𝑘) translates to

�̃� (
√
𝑛) in most of the input permutations. Therefore, a natural ques-

tion arises: Does there exist an efficient polylog(𝑛) span algorithm,

such that the total work is also nearly optimal?

In this paper, we give an affirmative answer to the above question.

We propose the first polylogarithmic span algorithm that computes

LIS with nearly optimal total work on an EREW PRAM, for which

simultaneous access to anymemory location by different processors

is forbidden either for reading or for writing.

Theorem 1.1. The longest increasing subsequence problem can be
solved in the EREW PRAM model by:
• a deterministic algorithm in 𝑂 (𝑛 log2 𝑛 log log𝑛) total work
and 𝑂 (log4 𝑛) span, or
• a randomized algorithm in 𝑂 (𝑛 log2 𝑛) work and 𝑂 (log4 𝑛)
span with high probability.

1.1 LIS via Implicit Subunit-Monge Matrix

Multiplication

Our algorithm is a divide and conquer based algorithm, follow-

ing the implicit subunit-Monge matrix multiplication framework

from Krusche and Tiskin [21]. Let the input 𝐴 = (𝑎1, . . . , 𝑎𝑛) be a
permutation of {1, . . . , 𝑛}. Consider the filtered sequence 𝐴𝑖, 𝑗 : the

subsequence of 𝐴 whose values are all within the range [𝑖 : 𝑗]. Let
𝐿𝐼𝑆 (𝐴𝑖, 𝑗) be the length of LIS of 𝐴𝑖, 𝑗 . A beautiful theorem from

1
Different dynamic programs have different realizations of dependency chains. The

dependency chain length of LIS is simply the length of LIS of the input sequence.

249

https://doi.org/10.1145/3558481.3591078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558481.3591078
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591078&domain=pdf&date_stamp=2023-06-17

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Nairen Cao, Shang-En Huang, and Hsin-Hao Su

Table 1: Parallel LIS algorithms. Here, 𝑛 refers to the length of the input array, 𝑘 refers to the length of the LIS solution and 𝑝

refers to the number of processors.

Reference Total Work Span Notes

Galil and Park [13] 𝑂 (𝑛2) 𝑂 (
√
𝑛 log𝑛) General 1D Dynamic Programming.

Garcia, Myoupo, and Semè [14] 𝑂 (𝑛2) 𝑂 (𝑛2/𝑝) Only 𝑂 (𝑝) communications.

Semè [30] 𝑂 (𝑛𝑝 log(𝑛/𝑝)) 𝑂 (𝑛 log(𝑛/𝑝))
Nakashima and Fujiwara [24] 𝑂 (𝑛 log𝑛) 𝑂 ((𝑛 log𝑛)/𝑝) or 𝑂 (𝑘2 log𝑛) Requires 𝑝 < 𝑛/𝑘2.
Krusche and Tiskin [20] 𝑂 (𝑛1.5) 𝑂 (𝑛/√𝑝)
Krusche and Tiskin [21] 𝑂 (𝑛 log2 𝑛) 𝑂 ((𝑛 log𝑝)/𝑝) or �̃� (𝑛2/3) Requires 𝑝 < 3

√
𝑛.

Shen, Wan, Gu, and Sun [31] 𝑂 (𝑛 log3 𝑛) 𝑂 (𝑘 log2 𝑛) With high probability.

Gu, Men, Shen, Sun, and Wan [15] 𝑂 (𝑛 log𝑘) 𝑂 (𝑘 log𝑛)

This paper.

𝑂 (𝑛 log2 𝑛 log log𝑛) 𝑂 (log4 𝑛)
𝑂 (𝑛 log2 𝑛) 𝑂 (log4 𝑛) With high probability; AC0

operations.

Tiskin [34–36]
2
states that if we define an (𝑛 + 1) × (𝑛 + 1) matrix

𝑀Σ
𝐴
, where

𝑀Σ
𝐴 (𝑖, 𝑗) =

{
𝑗 − 𝑖 − 𝐿𝐼𝑆 (𝐴𝑖+1, 𝑗) if 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,

0 otherwise,

Then there exists a sub-permutation matrix 𝑀𝐴 (a binary matrix

where each row and column sums up to atmost 1) whose distribution
matrix is exactly the same as𝑀Σ

𝐴
(see Section 2 for definitions). The

distribution matrix of a sub-permutation matrix is called a simple
subunit-Monge matrix.

Furthermore, Tiskin [34] proved that the entries of 𝑀Σ
𝐴

can

be obtained by the matrix distance multiplications (or so-called

(min , +)-multiplication), leading to a divide and conquer approach

that computes LIS. That is, if one splits the sequence 𝐴 into two

halves 𝐿 = (𝑎1, . . . , 𝑎𝑛/2) and 𝑅 = (𝑎𝑛/2+1, . . . , 𝑎𝑛), then

𝑀Σ
𝐴 (𝑖, 𝑘) = min

𝑖≤ 𝑗≤𝑘
{𝑀Σ

𝐿 (𝑖, 𝑗) +𝑀
Σ
𝑅 (𝑗, 𝑘)}.

Note that the matrices 𝑀Σ
𝐿
and 𝑀Σ

𝑅
are still (𝑛 + 1) × (𝑛 + 1)

matrices, since the range of values in both 𝐿 and 𝑅 are still [1, 𝑛].
To enable recursion, one simply renames the elements in 𝐿 and 𝑅

to the range [1, 𝑛/2] (see Section 4 for details). Following the above

idea, Krusche and Tiskin [20] successfully reduced the LIS problem

to polylogarithmic implicit subunit-Monge matrix multiplication
problems:

Theorem 1.2. Assume there is an EREW PRAM algorithm solving
the implicit 𝑛 × 𝑛 subunit-Monge matrix multiplication problem in
𝑂 (𝑊 (𝑛)) work and 𝑂 (𝑆 (𝑛)) span. Then, there is an EREW PRAM
algorithm that computes an LIS from a sequence of 𝑛 integers in
𝑂 (𝑊 (𝑛) log𝑛 + 𝑛 log𝑛) work and 𝑂 (𝑆 (𝑛) log𝑛 + log2 𝑛) span.

Since the entire matrix𝑀Σ
𝐴
can be encoded implicitly as a sub-

permutation using 𝑂 (𝑛) machine words, the only task that re-

mains is to design an efficient (parallel) algorithm that multiplies

two subunit-Monge matrices, given the implicit 𝑂 (𝑛)-size sub-

permutations.

Few sequential algorithms for fast implicit subunit-Monge ma-

trix multiplication were known. In particular, Tiskin [36] gives

2
The theorem statements from the literature were described in a more general longest

common subsequence scenario, here for clarity we exhibit their results in LIS.

an 𝑂 (𝑛 log𝑛) sequential algorithm, which is much faster com-

pared with the most general matrix distance multiplication in

𝑂 (𝑛3 log log𝑛
log

2 𝑛
) time [17] (see also [6, 23]), and Monge-matrix dis-

tance multiplications in 𝑂 (𝑛2) time [33]. For parallel algorithms,

the best nearly work-efficient parallel algorithm for fast implicit

subunit-Monge matrix multiplication has𝑂 (𝑛 log𝑛) total work and
�̃� (𝑛2/3) span, by Krusche and Tiskin [21]. This is also a divide and

conquer based algorithm. The high-level idea is described below.

Suppose that one wants to multiply 𝑀Σ
𝐿
and 𝑀Σ

𝑅
. The divide and

conquer framework somehow reduces the task into computing an

entry-wise minimum between two matrices𝑀′
𝑙𝑜

and𝑀′
ℎ𝑖
. A crucial

observation is that the entry-wise difference 𝛿 := 𝑀′
𝑙𝑜
−𝑀′

ℎ𝑖
has

a nice monotone property: The values are non-decreasing within

each row and each column. Once the algorithm obtains the bound-
ary of the negative (resp. positive) region in 𝛿 , the correct𝑀Σ

𝐴
can

be implicitly derived.

Notice that all the matrices are provided implicitly. The core task

is then to obtain the boundaries from a 𝛿 matrix when𝑀′
𝑙𝑜

and𝑀′
ℎ𝑖

are given implicitly. Due to the monotone property, the boundary

can be described in𝑂 (𝑛) size, and there is a simple walk-and-check

sequential subroutine that obtains the desired boundaries. Krusche

and Tiskin [21] tried to parallelize this walk-and-check subroutine

and ended up with a �̃� (𝑛2/3) span EREW PRAM algorithm.

1.2 Our Contribution

We parallelize the sequential walk-and-check subroutine with a

third-layer divide and conquer algorithm. After obtaining the 𝛿

matrix described above, our algorithm recursively finds the index

of the boundary in the middle row and divides the entire walk into

the upper half and the lower half.

The main challenge in this approach is to efficiently obtain the

middle row entry values in 𝛿 , from the implicit representations

of 𝑀′
𝑙𝑜

and 𝑀′
ℎ𝑖
. Krusche and Tiskin [21] observe that every en-

try in 𝛿 can be expressed as a difference of two quantities, where

each quantity corresponds to the number of nonzero entries in

the sub-permutation matrix associated with 𝑀′
𝑙𝑜

and 𝑀′
ℎ𝑖
. Thus,

these quantities can be computed efficiently via 2D range query

data structures. Applying an off-the-shelf parallel 2D range tree

(e.g., [32]) leads to an 𝑂 (log6 𝑛) span parallel algorithm for LIS.

250

Nearly Optimal Parallel Algorithms for Longest Increasing Subsequence SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Nevertheless, because of the nature of our approach, if we aim to

compute all 𝛿 values within a row, we do not even need a 2D range

tree – a simple parallel prefix sum subroutine suffices.

As a consequence, our algorithm achieves 𝑂 (log4 𝑛) span while

the total work stays near work-optimal. If one implements this

third layer divide and conquer algorithm directly, it imposes an ad-

ditional𝑂 (log𝑛) factor to the total work. With a cute trick of mini-
batching, our divide and conquer algorithm brings only𝑂 (log log𝑛)
additional factor to the total work: In our algorithm solving the

core task, we do not compute every entry in the middle row of

𝛿 . Instead, we compute every other 𝐿 entry along the row, where

𝐿 = Ω(log𝑛 log log𝑛). The trick essentially partitions the 𝛿 matrix

into 𝐿 × 𝐿 small squares, forming a coarse-grained walk. Once the

algorithm obtains the walk, an additional walk-and-check subrou-

tine can be applied in parallel to all the small squares that contain

the actual walk. To enable the trick, our algorithm splits the sub-

permutation into length 𝐿 chunks and sorts each chunk such that

each range query can be done in 𝑂 (log𝐿) = 𝑂 (log log𝑛) time via

a binary search. We remark that this mini-batching trick is not

invented abruptly. This trick is inspired by the classical “Four Rus-

sians” paradigm and occurs in many sequential sequence alignment

algorithms [7, 34] and range query data structures [19].

Furthermore, if the algorithm is further allowed to use random-

ness and integer sorting (such as signature sort [3]), the algorithm

only brings 𝑂 (1) overhead to the total work with high probability.

We summarize the result below:

Theorem 1.3. There exists a randomized algorithm in the EREW
PRAM model with AC0operations3 that computes implicit simple sub-
unit Monge matrix multiplication in 𝑂 (log3 𝑛) span and 𝑂 (𝑛 log𝑛)
total work with high probability.

Combining Theorem 1.3 and Theorem 1.2 gives us Theorem 1.1.

Application: Semi-Local LCS Algorithms. The longest common

subsequence (LCS) problem can be thought of as a generalization

of LIS. The input consists of two sequences 𝑥 and 𝑦, where 𝑥 has

length 𝑚 = |𝑥 | and 𝑦 has length 𝑛 = |𝑦 |. The output is the LCS

between𝑥 and𝑦. In PRAMmodels, there are already optimal parallel

algorithms for computing LCS with �̃� (𝑚𝑛) total work and �̃� (1)
span [22], and in the decision tree model, there is a matching lower

bound Ω(𝑚𝑛) given by Aho, Hirschberg, and Ullman [1].

The semi-local LCS problem extends the LCS problem: the al-

gorithm must compute the LCS between 𝑥 and every subsequence
of 𝑦. Tiskin’s algorithm [34] solves the semi-local LCS problem

in 𝑂 (𝑚𝑛) total work and �̃� (𝑛2/3) span, via the implicit subunit-

Monge matrix multiplication. Thus, our implicit subunit-Monge

matrix multiplication algorithm also implies a faster algorithm for

solving the semi-local LCS problem.

Corollary 1.4. Given two sequences of lengths𝑚 and 𝑛, there
exists a deterministic semi-local LCS algorithm with 𝑂 (𝑚𝑛) total
work and 𝑂 (log4 (𝑚 + 𝑛)) span.

3
An AC0

machine allows any machine word operations that could be implemented

by a constant depth circuit. This includes common bitwise operations, addition and

subtractions of two machine words.

1.3 Related Works

Sequential Word RAM model with AC0operations. In the word

RAM model, we assume that each machine word has Ω(log𝑛)
bits. By allowing AC0

operations, it is possible to perform bitwise

operations, which enables in-word parallelism: packing several small

integers into a single machine word and then performing operations

to these integers at once. Under this model, the lower bound based

on decision trees does not apply anymore. For example, sorting a

sequence of integers can now be done in 𝑂 (𝑛 log log𝑛) time with

𝑂 (𝑛) space by Han [16]. With Han’s integer sorting algorithm,

LIS can then be found in 𝑂 (𝑛 log log𝑛) time using a more efficient

integer dictionary that supports insertion, deletion, and successor

operations (e.g., using a van Emde Boas tree [37, 38]). Crochemore

and Porat [8] further improve the runtime to 𝑂 (𝑛 log log𝑘) in the

sequential model, where 𝑘 refers to the length of the LIS.

Massively Parallel Computationmodel. Anotherwell-investigated
parallel model is the massively parallel computation model (MPC).

In the MPC model, a parameter 𝛿 (0 < 𝛿 < 1) is given. On input of

size 𝑛, the algorithm is allowed to use 𝑛𝛿 machines, and on each

machine, the memory size is constrained by �̃� (𝑛1−𝛿). The compu-

tation proceeds in rounds. In each round, an arbitrary computation

with limited memory can be performed locally on each machine.

After local computations in a round are done, messages can be

sent between machines as long as the total amount of messages

received from a single machine does not exceed its memory limit.

The ultimate goal in designing MPC algorithms is to minimize the

number of rounds.

Regarding the solution of LIS, the work of Krusche and Tiskin [20,

21] implies an 𝑂 (log𝑛) round algorithm in the MPC model. Im,

Moseley, and Sun [18] give an𝑂 (1) roundMPC algorithm for (1−𝜖)-
approximating LIS.Whether or not the exact LIS can be solved using

𝑂 (1) rounds is still open.

Paper Outline

In Section 3, we will present our main result — an �̃� (1) span EREW

PRAM algorithm that multiplies two subunit-Monge matrices im-

plicitly. In Section 4, we finish the proof of Theorem 1.2 with the

details of computing an LIS from implicit subunit-Monge matrix

multiplications.

2 PRELIMINARIES

Notations. For integers 𝑖 and 𝑗 , we use [𝑖 : 𝑗] to denote set

{𝑖, 𝑖 + 1, ..., 𝑗} and [𝑖 : 𝑗) to denote set {𝑖, 𝑖 + 1, ..., 𝑗 − 1}. We denote

the half integer set {𝑖 + 1

2
, 𝑖 + 3

2
, ..., 𝑗 − 1

2
} by ⟨𝑖 : 𝑗⟩. To distinguish

the half-integer variable and the integer variable, we mark the

half-integer variables by .̂ For example, 𝑖, 𝑗 are integer variables,

and 𝚤, 𝚥 are half-integer variables. We heavily use half-integers as

matrix indices. For a matrix 𝑀 and half-integer indexes 𝚤, 𝚥, we

define𝑀 (𝚤, 𝚥) = 𝑀 (𝚤 + 1

2
, 𝚥 + 1

2
). We denote the Cartesian product

by [𝑖1 : 𝑖2] × [𝑗1 : 𝑗2].
Given a matrix 𝑀 of size 𝑚 × 𝑛, its distribution matrix 𝑀Σ

is

defined as

𝑀Σ (𝑖, 𝑗) =
∑︁

𝚤∈⟨𝑖:𝑚⟩, 𝚥∈⟨0:𝑗 ⟩
𝑀 (𝚤, 𝚥)

251

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Nairen Cao, Shang-En Huang, and Hsin-Hao Su

for all 𝑖 ∈ [0 : 𝑚], 𝑗 ∈ [0 : 𝑛]. In other words, 𝑀Σ (𝑖, 𝑗) is the sum
of the submatrix𝑀 with index (𝚤, 𝚥) ∈ ⟨𝑖 :𝑚⟩ × ⟨0 : 𝑗⟩.

In this work, we will focus on the sub-permutation matrix 𝑃 . A

matrix 𝑃 is a sub-permutation matrix if and only if

• each element in 𝑃 is either 0 or 1,

• there is at most one element equal to 1 in each row and each

column of 𝑃 .

We can maintain a vector to support querying row(column) non-

zero index in 𝑂 (1) time.

The distribution matrix 𝑃Σ of a sub-permutation matrix 𝑃 is

called a subunit-Monge matrix. Given two sub-permutation ma-

trix 𝑃𝐴 , 𝑃𝐵 , the implicit subunit-Monge matrix multiplica-
tion problem is to compute 𝑃𝐶 = 𝑃𝐴 ⊡ 𝑃𝐵 such that 𝑃Σ

𝐶
(𝑖, 𝑘) =

𝑚𝑖𝑛 𝑗 (𝑃Σ𝐴 (𝑖, 𝑗) + 𝑃
Σ
𝐵
(𝑗, 𝑘)), that is to compute the (𝑚𝑖𝑛, +) product

of subunit-Monge matrix 𝑃Σ
𝐴
and 𝑃Σ

𝐵
. We use ⊡ to represent the

implicit subunit-Monge matrix multiplication operation. The sub-

permutations matrices are closed under the ⊡ operation. More

formally,

Lemma 2.1 ([33]). Given two sub-permutation matrix 𝑃𝐴, 𝑃𝐵 , let
𝑃𝐶 = 𝑃𝐴 ⊡ 𝑃𝐵 , then 𝑃𝐶 is also a sub-permutation matrix.

Given two permutation matrices, the indices of their non-zero

entries can be stored in 𝑂 (𝑛) space. Based on Lemma 2.1, it is

possible to store the output of ⊡ in 𝑂 (𝑛) space. The question is

whether we can design an algorithm that supports the ⊡ operation

fast.

3 ALGORITHM

In this section, we present an algorithm to solve the implicit subunit-

Mongematrixmultiplication problem of two𝑛×𝑛 sized sub-permutation

matrices using 𝑂 (𝑛 log𝑛) work and 𝑂 (log3 𝑛) span.
Our algorithm follows the blueprint of Krusche and Tiskin’s

algorithm. We first provide an overview of their algorithm and

identify its bottleneck in Section 3.1. In Section 3.2, we partition

the matrix into
𝑛
𝐿
× 𝑛

𝐿
grids of size 𝐿 × 𝐿 to reduce the size of

the problem. We then show that solving the bottleneck on these

grids efficiently will allow us to solve the bottleneck on the original

problem efficiently. Finally, in Section 3.3, we present a divide and

conquer algorithm to solve the bottleneck on the grids efficiently.

3.1 Overview of Krusche and Tiskin’s algorithm

Given two sub-permutation matrices 𝑃𝐴, 𝑃𝐵 of size 𝑛 × 𝑛, the goal
is to compute 𝑃𝐶 = 𝑃𝐴 ⊡𝑃𝐵 . Krusche and Tiskin’s approach utilizes

a divide-and-conquer method. First, 𝑃𝐴 is split vertically into two

matrices of size 𝑛 × 𝑛
2
. The resulting matrices, denoted 𝑃𝐴,𝑙𝑜 and

𝑃𝐴,ℎ𝑖 , respectively, contain the column indices of 𝑃𝐴 in the ranges

⟨0 :
𝑛
2
⟩ and ⟨𝑛

2
: 𝑛⟩. Similarly, 𝑃𝐵 is split horizontally into two

matrices of size
𝑛
2
× 𝑛, denoted 𝑃𝐵,𝑙𝑜 and 𝑃𝐵,ℎ𝑖 , which contain the

row indices of 𝑃𝐵 in the ranges ⟨0 : 𝑛
2
⟩ and ⟨𝑛

2
: 𝑛⟩.

In the divide step the algorithm obtains 𝑃𝐶,𝑙𝑜 and 𝑃𝐶,ℎ𝑖 such that

𝑃𝐶,𝑙𝑜 = 𝑃𝐴,𝑙𝑜 ⊡ 𝑃𝐵,𝑙𝑜 and 𝑃𝐶,ℎ𝑖 = 𝑃𝐴,ℎ𝑖 ⊡ 𝑃𝐵,ℎ𝑖 .

Although 𝑃𝐴,𝑙𝑜 has size 𝑛 × 𝑛
2
, the key observation is that 𝑃𝐴,𝑙𝑜

contains at most
𝑛
2
non-zero rows. It can be shown that if the 𝑗-th

row of 𝑃𝐴,𝑙𝑜 contains only zero, then the 𝑗-th row of 𝑃𝐶,𝑙𝑜 also

contains only zero. Therefore, we can safely remove
𝑛
2
rows of

𝑃𝐴,𝑙𝑜 and
𝑛
2
columns of 𝑃𝐵,𝑙𝑜 which contains only 0. Then we apply

⊡ operation on the sub permutation matrices of size
𝑛
2
× 𝑛

2
and plug

in the corresponding missing rows and columns back to 𝑃𝐶,ℎ𝑖 and

𝑃𝐶,𝑙𝑜 . In the divide step, we need to compute two subproblems of

size
𝑛
2
.

It is highly nontrivial to obtain 𝑃𝐶 from 𝑃𝐶,𝑙𝑜 and 𝑃𝐶,ℎ𝑖 . Indeed,

⊡ operates on the distribution matrices. 𝑃Σ
𝐴,ℎ𝑖

(or 𝑃Σ
𝐵,𝑙𝑜

) are different

from the distribution matrix of the corresponding part of 𝑃𝐴 (or

𝑃𝐵). Although 𝑃𝐶,𝑙𝑜 + 𝑃𝐶,ℎ𝑖 is still a sub-permutation matrix, in the

most cases 𝑃𝐶 ≠ 𝑃𝐶,𝑙𝑜 + 𝑃𝐶,ℎ𝑖 .
Fortunately, the good news is that one can compute 𝑃Σ

𝐶
(𝑖, 𝑘)

using the definition of the distribution matrix, replace the corre-

sponding term with 𝑃Σ
𝐶,𝑙𝑜

, 𝑃Σ
𝐶,ℎ𝑖

, and conclude that

𝑃Σ𝐶 (𝑖, 𝑘) =𝑚𝑖𝑛

{
𝑃Σ
𝐶,𝑙𝑜
(𝑖, 𝑘) + 𝑃Σ

𝐶,ℎ𝑖
(0, 𝑘), 𝑃Σ

𝐶,𝑙𝑜
(𝑖, 𝑛) + 𝑃Σ

𝐶,ℎ𝑖
(𝑖, 𝑘)

}
.

The final 𝑃𝐶 depends on the difference between the above two

parameters in the𝑚𝑖𝑛 function. Let 𝛿 be the difference matrix of

size (𝑛 + 1) × (𝑛 + 1), where

𝛿 (𝑖, 𝑘) =
(
𝑃Σ
𝐶,𝑙𝑜
(𝑖, 𝑘) + 𝑃Σ

𝐶,ℎ𝑖
(0, 𝑘)

)
−
(
𝑃Σ
𝐶,𝑙𝑜
(𝑖, 𝑛) + 𝑃Σ

𝐶,ℎ𝑖
(𝑖, 𝑘)

)
=

∑︁
𝚤∈⟨0:𝑖 ⟩, ˆ𝑘∈⟨0:𝑘 ⟩

𝑃𝐶,ℎ𝑖 (𝚤, ˆ𝑘) −
∑︁

𝚤∈⟨𝑖:𝑛⟩, ˆ𝑘∈⟨𝑘 :𝑛⟩

𝑃𝐶,𝑙𝑜 (𝚤, ˆ𝑘) .

See Figure 1a for how to compute 𝛿 (𝑖, 𝑘). By a careful analysis of
the relation between 𝛿 and 𝑃𝐶 [33], we have the following condition

for locating all non-zero terms in 𝑃𝐶 .

Lemma 3.1 ([33]). Let 𝑃𝐴, 𝑃𝐵 be two sub-permutation matrices
and 𝑃𝐶 = 𝑃𝐴 ⊡ 𝑃𝐵 . Let 𝑃𝐶,𝑙𝑜 , 𝑃𝐶,ℎ𝑖 , 𝛿 be the matrix defined above,
then for any 𝚤, ˆ𝑘 ∈ ⟨0 : 𝑛⟩, 𝑃𝐶 (𝚤, ˆ𝑘) = 1 if and only if one of the
following three conditions holds:

(3.1a) 𝛿 (𝚤 + 1

2
, ˆ𝑘 + 1

2
) ≤ 0 and 𝑃𝐶,𝑙𝑜 (𝚤, ˆ𝑘) = 1,

(3.1b) 𝛿 (𝚤 + 1

2
, ˆ𝑘 + 1

2
) > 0 and 𝑃𝐶,ℎ𝑖 (𝚤, ˆ𝑘) = 1,

(3.1c) 𝛿 (𝚤 + 1

2
, ˆ𝑘 + 1

2
) > 0, 𝛿 (𝚤 + 1

2
, ˆ𝑘 − 1

2
) = 0 and 𝛿 (𝚤 − 1

2
, ˆ𝑘 − 1

2
) < 0.

We can use Lemma 3.1 to compute 𝑃𝐶 . First, we notice that 𝛿 (𝑖, 𝑘)
is non-decreasing with respect to 𝑖 (and 𝑘). Specifically:

Lemma 3.2. For any 𝑖, 𝑘 ∈ [1 : 𝑛], 𝛿 (𝑖, 𝑘) − 𝛿 (𝑖 − 1, 𝑘) ∈ {0, 1}
and 𝛿 (𝑖, 𝑘) − 𝛿 (𝑖, 𝑘 − 1) ∈ {0, 1}.

Proof. We prove one case and the other one is similar,

𝛿 (𝑖, 𝑘) − 𝛿 (𝑖 − 1, 𝑘) =
∑︁

ˆ𝑘∈⟨0:𝑘 ⟩

𝑃𝐶,ℎ𝑖 (𝑖 − 1

2
, ˆ𝑘) +

∑︁
ˆ𝑘∈⟨𝑘 :𝑛⟩

𝑃𝐶,𝑙𝑜 (𝑖 − 1

2
, ˆ𝑘)

Since 𝑃𝐶,𝑙𝑜 + 𝑃𝐶,ℎ𝑖 is a sub-permutation matrix [33], at most one

term is 1 in the right hand side. □

Since 𝛿 is non-decreasing with respect to 𝑖 and 𝑘 , there will be a

line splitting the positive and non-positive terms of 𝛿 . See Figure 1c

for the line. If we already know the line, we can figure out the non-

zero terms of 𝑃𝐶 in (3.1a) and (3.1b) with 𝑂 (𝑛) work and 𝑂 (log𝑛)
span. For (3.1c), we can decide the corresponding 𝛿 (𝚤 + 1

2
, ˆ𝑘 + 1

2
) = 1

for each row 𝚤 + 1

2
using the line. However, we still need to check

𝛿 (𝚤 + 1

2
, ˆ𝑘 − 1

2
), 𝛿 (𝚤− 1

2
, ˆ𝑘 − 1

2
) value. Fortunately, if we already know

𝛿 (𝚤 + 1

2
, ˆ𝑘 + 1

2
), one can query the neighboring value in 𝑂 (1) time

based on the following lemma.

252

Nearly Optimal Parallel Algorithms for Longest Increasing Subsequence SPAA ’23, June 17–19, 2023, Orlando, FL, USA

(a) An illustration of computing 𝛿 (2, 6) . (b) An example of 𝛿-table. (c) An example of computing 𝑃𝐶 .

Figure 1: The red circles represent the non-zero terms of sub-permutation 𝑃𝐶,𝑙𝑜 and the blue squares represent the non-zero

terms of sub-permutation 𝑃𝐶,ℎ𝑖 . In Figure 1a to compute 𝛿 (2, 6), we first count the blue squares in the blue area, then subtract

the number of red circles in the red area. Figure 1b is an example 𝛿-table that represents the very last recursion step when

computing the LIS of the following sequence: (6, 2, 1, 8, 10, 7, 3, 9, 5, 4). In Figure 1c, the red line splits positive and non-positive

terms in 𝛿-table. the star symbols represent the non-zero terms of sub-permutation 𝑃𝐶 . The red line splits the positive and

non-positive terms of 𝛿 . There are 3 cases for non-zero terms of 𝑃𝐶 : the red circles in the red area of (3.1a), the blue squares in

the blue area of (3.1b), and the turning points of (3.1c).

Lemma 3.3. Let 𝛿 be the difference matrix defined above. If we
are given 𝛿 (𝑖, 𝑗) for fixed 𝑖 and 𝑗 , and the locations of the nonzeros
in 𝑃𝐶,ℎ𝑖 and 𝑃𝐶,𝑙𝑜 , then we can compute the four neighbor values
𝛿 (𝑖 ± 1, 𝑗), 𝛿 (𝑖, 𝑗 ± 1) in 𝑂 (1) time.

Proof. We show how to compute 𝛿 (𝑖 + 1, 𝑗). Based on definition

of 𝛿 , we have

𝛿 (𝑖 + 1, 𝑗) − 𝛿 (𝑖, 𝑗) =
∑︁

𝚥∈⟨0:𝑗 ⟩
𝑃𝐶,ℎ𝑖 (𝑖 + 1

2
, 𝚥) +

∑︁
𝚥∈⟨ 𝑗 :𝑛⟩

𝑃𝐶,𝑙𝑜 (𝑖 + 1

2
, 𝚥)

Since 𝑃𝐶,ℎ𝑖 , 𝑃𝐶,𝑙𝑜 are both sub-permutation matrices, there will be

only 1 non-zero item in each row.We can access each non-zero index

in𝑂 (1) time and compute

∑
𝚥∈⟨0:𝑗 ⟩𝑃𝐶,ℎ𝑖 (𝑖+ 1

2
, 𝚥) +∑𝚥∈⟨ 𝑗 :𝑛⟩𝑃𝐶,𝑙𝑜 (𝑖+

1

2
, 𝚥). We already know the value of 𝛿 (𝑖, 𝑗), so the value of 𝛿 (𝑖 + 1, 𝑗)

can be computed in 𝑂 (1) time. □

Combining all three cases, to determine the non-zero term of 𝑃𝐶 ,

the core problem is to find the index of the first positive term of the

matrix 𝛿 per row given two sub-permutation matrices 𝑃𝐶,𝑙𝑜 , 𝑃𝐶,ℎ𝑖 .

Core problem

More formally, we are given two sub permutation matrices 𝑃𝐶,𝑙𝑜 ,

𝑃𝐶,ℎ𝑖 . Let 𝛿 be (𝑛 + 1) × (𝑛 + 1) size matrix and

𝛿 (𝑖, 𝑘) =
∑︁

𝚤∈⟨0:𝑖 ⟩, ˆ𝑘∈⟨0:𝑘 ⟩

𝑃𝐶,ℎ𝑖 (𝚤, ˆ𝑘) −
∑︁

𝚤∈⟨𝑖:𝑛⟩, ˆ𝑘∈⟨𝑘 :𝑛⟩

𝑃𝐶,𝑙𝑜 (𝚤, ˆ𝑘)

The target is to compute the first positive term index 𝑓 (𝑖) for each
row 𝑖 , i.e., for each 𝑖 ∈ [0 : 𝑛], 𝑓 (𝑖) is the smallest integer value 𝑘′

such that 𝛿 (𝑖, 𝑘′) > 0. We assume that such 𝑓 (𝑖) ∈ [0 : 𝑛] always
exists. Otherwise, 𝛿 (𝑖, 𝑛) ≤ 0 holds and one can use the prefix sum

to compute 𝛿 (𝑖, 𝑛) and check it.

In the following subsections, we will show how to compute 𝑓 (𝑖)
for 𝑖 ∈ [0 : 𝑛] with 𝑂 (𝑛) work and 𝑂 (log2 𝑛) span using random-

ization, or𝑂 (𝑛 log log𝑛) work and𝑂 (log2 𝑛) deterministically. Our

main theorem for implicit subunit-Monge matrix multiplication is

given as follows.

Theorem 3.4. Consider two 𝑛 × 𝑛 sub-permutation matrices.

• There is a deterministic EREW PRAM algorithm for implicit
subunit-Mongematrixmultiplication with𝑂 (𝑛 log𝑛 log log𝑛)
work and 𝑂 (log3 𝑛) span.
• There exists a randomized EREW PRAM algorithm with AC0

operations on Θ(log𝑛)-bit machine words that computes im-
plicit subunit-Monge matrix multiplication with 𝑂 (𝑛 log𝑛)
work and 𝑂 (log3 𝑛) span.

Bottleneck of the core problem. Note that for each row of 𝛿 , its

value is non-decreasing, if we can query each 𝛿 (𝑖, 𝑘) efficiently,

then we can compute the value 𝑓 efficiently by a binary search of

each row. The bottleneck is to query each value, we have to con-

struct a 2D-range query data structure. There is indeed such parallel

2D-range query data structure [32]. However, their construction re-

quires Θ(𝑛 log𝑛) total work for preprocessing and 𝑂 (log2 𝑛) work
for each query, which imposes at least extra Ω(log𝑛) overhead on

the total work.

3.2 Computing 𝑓

Instead of considering all points of 𝛿 (𝑖, 𝑘) for 𝑖, 𝑘 ∈ [0, 𝑛], we will
consider points 𝛿 (𝑖𝐿, 𝑘𝐿), where 𝑖, 𝑘 ∈ [0, 𝑛

𝐿
] and 𝐿 is a parameter

to be determined. Note that we view an (𝑛+1) × (𝑛+1) sized matrix

as a 𝑂 (𝑛
𝐿
) × 𝑂 (𝑛

𝐿
) grid. Most grid cells are sub-matrices of size

𝐿 × 𝐿 except the cells at the boundary. We assume that 𝐿 divides 𝑛.

253

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Nairen Cao, Shang-En Huang, and Hsin-Hao Su

Otherwise, we can always add at most 𝐿 − 1 extra zero rows and/or
columns to make

𝑛
𝐿
an integer.

Our new target is to compute the approximate index ˜𝑓 for each

grid row. For each 𝑖 ∈ [0, 𝑛
𝐿
], we define ˜𝑓 (𝑖) such that

• ˜𝑓 (𝑖) is the smallest integer 𝑘′ such that 𝛿 (𝑖𝐿, 𝑘′𝐿) > 0; or

• if 𝛿 (𝑖𝐿, 𝑘𝐿) ≤ 0 for all 𝑘 ∈ [0, 𝑛
𝐿
], then ˜𝑓 (𝑖) = 𝑛

𝐿
.

In the next subsection, we will describe an algorithm that outputs

(𝑖𝐿, ˜𝑓 (𝑖)𝐿) and 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for 𝑖 ∈ [0, 𝑛
𝐿
].

Lemma 3.5. Consider two 𝑛 × 𝑛 sized sub-permutation matrices
𝑃𝐶,ℎ𝑖 and 𝑃𝐶,𝑙𝑜 . Let 𝛿, 𝑓 , ˜𝑓 be the matrix and value defined above,
and 𝐿 = Ω(log𝑛 log log𝑛). Then, to compute all approximate indices
˜𝑓 (𝑖) and the associated 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) values for all 𝑖 ∈ [0 : 𝑛

𝐿
],

• there exists a deterministic EREW PRAM algorithm with an
𝑂 (𝑛 log log𝑛) total work and 𝑂 (log2 𝑛) span; and
• there exists a randomized EREW PRAM algorithm with AC0

operations on word size 𝑍 = Θ(log𝑛) in 𝑂 (𝑛) work and
𝑂 (log2 𝑛) span with high probability.

From approximate index ˜𝑓 to 𝑓 . The remaining part of this section

aims to show how to compute 𝑓 using
˜𝑓 . Before we establish the

algorithm, we first describe some useful properties to 𝑓 and
˜𝑓 .

Lemma 3.6. The following property holds for 𝑓 and ˜𝑓 :

(3.6a) for any 𝑖 < 𝑗 , we have 𝑓 (𝑖) ≥ 𝑓 (𝑗) and ˜𝑓 (𝑖) ≥ ˜𝑓 (𝑗);
(3.6b) for any 𝑗 ∈ [𝑖𝐿 : (𝑖+1)𝐿), we have 𝑓 (𝑗) ∈ (˜𝑓 (𝑖+1)𝐿−𝐿, ˜𝑓 (𝑖)𝐿].

Proof. (3.6a) We only show 𝑓 (𝑖) ≥ 𝑓 (𝑗), ˜𝑓 (𝑖) ≥ ˜𝑓 (𝑗) holds for
the same reason. Based on Lemma 3.2, 𝛿 (𝑗, 𝑓 (𝑖)) ≥ 𝛿 (𝑖, 𝑓 (𝑖)) > 0

and 𝑓 (𝑗) ≤ 𝑓 (𝑖) based on the definition of 𝑓 (𝑗).
(3.6b) Based on the definition of 𝑓 (𝑗), we have 𝛿 (𝑗, 𝑓 (𝑗)) > 0.

Based on Lemma 3.2, 𝛿 ((𝑖 + 1)𝐿, 𝑓 (𝑗)) ≥ 𝛿 (𝑗, 𝑓 (𝑗)) > 0. Since

˜𝑓 (𝑖 + 1) is the smallest integer such that 𝛿 ((𝑖 + 1)𝐿, ˜𝑓 (𝑖 + 1)𝐿) > 0,

we have 𝑓 (𝑗) > ˜𝑓 (𝑖 + 1)𝐿 − 𝐿.
On the other hand, if 𝑓 (𝑗) = 0, then 𝑓 (𝑗) ≤ ˜𝑓 (𝑖)𝐿 because

˜𝑓 (𝑖) ≥
0. Otherwise, we have 𝛿 (𝑗, 𝑓 (𝑗) − 1) ≤ 0. Based on Lemma 3.2,

𝛿 (𝑖𝐿, 𝑓 (𝑗) −1) ≤ 𝛿 (𝑗, 𝑓 (𝑗) −1) ≤ 0.
˜𝑓 (𝑖) is the smallest integer such

that 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) > 0, so
˜𝑓 (𝑖)𝐿 > 𝑓 (𝑗) − 1 and 𝑓 (𝑗) ≤ ˜𝑓 (𝑖)𝐿. □

Lemma 3.6 provides useful properties for computing 𝑓 using

(𝑖𝐿, ˜𝑓 (𝑖)𝐿) and 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿). According to Lemma (3.6b), for any

row 𝑗 ∈ [𝑖𝐿, (𝑖 + 1)𝐿), the index (𝑗, 𝑓 (𝑗)) lies within the rectangle

[𝑖𝐿 : (𝑖 + 1)𝐿) × (˜𝑓 (𝑖 + 1)𝐿−𝐿, ˜𝑓 (𝑖)𝐿]. Therefore, for each 𝑖 ∈ [0, 𝑛
𝐿
),

it suffices to search through
˜𝑓 (𝑖) − (˜𝑓 (𝑖 + 1) − 1) grid cells. In total,

there are

∑
𝑖 (˜𝑓 (𝑖) − ˜𝑓 (𝑖 + 1) + 1) = 𝑂 (𝑛

𝐿
) grid cells where (𝑗, 𝑓 (𝑗))

is located. See Figure 2 for an example. Below, we give an algorithm

to scan through a grid cell.

Identifying 𝑓 Inside a Grid Cell

Consider a grid cell whose upper-right corner has the matrix index

(𝑖𝐿, (𝑘+1)𝐿) and the lower-left corner is indexed by ((𝑖+1)𝐿−1, 𝑘𝐿+
1). Whenever we have 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿), then Algorithm 1 identifies

all 𝑓 (𝑗) such that (𝑗, 𝑓 (𝑗)) ∈ [𝑖𝐿 : (𝑖 + 1)𝐿) × (𝑘𝐿 : (𝑘 + 1)𝐿].

Figure 2: An example of
˜𝑓 . 𝐿 = 2. We only consider points

in the gray shadow. The red line is for 𝑓 . The red circles

represent the node (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for 𝑖 ∈ [0 : 5].

Algorithm 1 Description. Inside a grid, Algorithm 1 searches start-

ing from the top right node. The algorithm uses the current and

neighboring 𝛿 to decide where to traverse next. If 𝑖𝑐 or 𝑘𝑐 touches

the boundary, the algorithm terminates. See Figure 3 for example.

Correctness of Algorithm 1. For a fixed row 𝑖 , there are 3 cases:

(1) The row 𝑖 contains only non-positive 𝛿 values, i.e., 𝛿 (𝑖, 𝑘𝑐) ≤
0 for all 𝑘𝑐 ∈ (𝑘𝐿 : (𝑘 + 1)𝐿],

(2) 𝑓 (𝑖) ∈ (𝑘𝐿 : (𝑘 + 1)𝐿], in this case, we need to show that

Algorithm 1 traverse point (𝑖, 𝑓 (𝑖)),
(3) 𝑓 (𝑖) ≤ 𝑘𝐿. In other words, 𝛿 (𝑗, 𝑘𝐿) > 0.

It is important to note that these cases appear in order of increasing

row index. That is, if row 𝑖1 is the first case and row 𝑖2 is the second

case, then we have 𝑖1 < 𝑖2. That is because 𝛿 (𝑖, 𝑘) is non-decreasing.
Another observation is that if row 𝑖 and 𝑖 + 1 are both in case

(2) and we have already traversed (𝑖, 𝑓 (𝑖)), then Algorithm 1 will

traverse (𝑖 + 1, 𝑓 (𝑖)). Based on Lemma (3.6a), we have 𝑓 (𝑖 + 1) ≤
𝑓 (𝑖). For all points (𝑖, 𝑘𝑐) such that 𝑘𝑐 ∈ (𝑓 (𝑖 + 1), 𝑓 (𝑖)], we have
𝛿 (𝑖, 𝑘𝑐) > 0 and 𝛿 (𝑖, 𝑘𝑐 − 1) > 0 and the algorithm chooses to

decrease 𝑘𝑐 by 1. Finally, the algorithm traverses the point (𝑖 +
1, 𝑓 (𝑖 + 1)).

We can show that when the algorithm goes to the first row satis-

fying case (2), 𝑘𝑐 = (𝑘 + 1)𝐿. That is because, before reaching case

(2) rows, the algorithm must only have case (1) rows. For each case

(1) row, we always have 𝛿 (𝑖𝑐 , 𝑘𝑐) ≤ 0, and the algorithm chooses to

increase 𝑖𝑐 by 1 without changing 𝑘𝑐 . When the algorithm trans-

verses to the first row satisfying case (2), it starts from (𝑖𝑐 , (𝑘 + 1)𝐿)
from right to left until it arrives at (𝑖𝑐 , 𝑓 (𝑖𝑐)). Then, based on our

second observation, Algorithm 1 can traverse all case (2) rows, and

thereby the following lemma holds.

Lemma 3.7. For any 𝑓 (𝑗) such that 𝑗 ∈ [𝑖𝐿 : (𝑖 + 1)𝐿) and 𝑓 (𝑗) ∈
(𝑘𝐿 : (𝑘 + 1)𝐿], Algorithm 1 computes 𝑓 (𝑗) correctly. □

Running time of Algorithm 1. Algorithm 1 only increases 𝑖𝑐 or de-

creases 𝑘𝑐 by one in each iteration. In total, there will be at most 2𝐿

iteration. The only difficulty is that we need to compute 𝛿 (𝑖𝑐 , 𝑘𝑐 −1)
and the new 𝛿 (𝑖𝑐 , 𝑘𝑐). Lemma 3.3 shows that querying the neigh-

bor value of 𝛿 (𝑖𝑐 , 𝑘𝑐) takes 𝑂 (1) time. Since we know 𝛿 (𝑖𝑐 , 𝑘𝑐) at

254

Nearly Optimal Parallel Algorithms for Longest Increasing Subsequence SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Algorithm 1 Identifying 𝑓 inside a grid.

Input: the grid’s top-right index (𝑖𝐿, (𝑘 + 1)𝐿) and 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿).
Output: 𝑓 (𝑗) for all 𝑗 ∈ [𝑖𝐿 : (𝑖 + 1)𝐿) with 𝑓 (𝑗) ∈ (𝑘𝐿 : (𝑘 + 1)𝐿].
1: function IdentifyGrid((𝑖𝐿, (𝑘 + 1)𝐿), 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿))
2: Set 𝑖𝑐 ← 𝑖𝐿 and 𝑘𝑐 ← (𝑘 + 1)𝐿.
3: while 𝑖𝑐 < (𝑖 + 1)𝐿 and 𝑘𝑐 > 𝑘𝐿

4: if 𝛿 (𝑖𝑐 , 𝑘𝑐) > 0 and 𝛿 (𝑖𝑐 , 𝑘𝑐 − 1) ≤ 0 then

5: 𝑓 (𝑖𝑐) = 𝑘𝑐 , 𝑖𝑐 ← 𝑖𝑐 + 1
6: else if 𝛿 (𝑖𝑐 , 𝑘𝑐) > 0 then 𝑘𝑐 ← 𝑘𝑐 − 1
7: else 𝑖𝑐 ← 𝑖𝑐 + 1
8: compute 𝛿 (𝑖𝑐 , 𝑘𝑐)

Figure 3: An example of Algorithm 1, 𝐿 = 5. The algorithm

runs on the gray points. The red line corresponds to 𝑓 . The

blue circles represent the traversal of Algorithm 1.

the beginning, each 𝛿 query only takes 𝑂 (1) time. Combining all

together, Algorithm 1 takes 𝑂 (𝐿) time.

The input to Algorithm 1. Using Algorithm 1, we can identify 𝑓

inside a grid. However, we need to clarify one last point, the input

to Algorithm 1 is (𝑖𝐿, (𝑘 + 1)𝐿) and 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿). We already have

𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for fixed 𝑖 , but we do not know 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿) for all
𝑘 + 1 ∈ [˜𝑓 (𝑖 + 1) : ˜𝑓 (𝑖)]. We still need to figure out 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿)
for 𝑘 + 1 ∈ [˜𝑓 (𝑖 + 1) : ˜𝑓 (𝑖)). Note that for a fixed 𝑖 and for 𝑗 ∈
[˜𝑓 (𝑖 + 1)𝐿 :

˜𝑓 (𝑖)𝐿), we have

𝛿 (𝑖𝐿, 𝑗) − 𝛿 (𝑖𝐿, 𝑗 − 1) =
∑︁

𝚤∈⟨0:𝑖𝐿⟩
𝑃𝐶,ℎ𝑖 (𝚤, 𝑗 − 1

2
) +

∑︁
𝚤∈⟨𝑖𝐿:𝑛⟩

𝑃𝐶,𝑙𝑜 (𝚤, 𝑗 − 1

2
) .

The right hand side can be computed in 𝑂 (1) time. We can set a

vector of length (˜𝑓 (𝑖) − ˜𝑓 (𝑖 + 1))𝐿 and, for 𝑗 ∈ [˜𝑓 (𝑖 + 1)𝐿 :
˜𝑓 (𝑖)𝐿),

we fill −(∑𝚤∈⟨0:𝑖𝐿⟩ 𝑃𝐶,ℎ𝑖 (𝚤, 𝑗 − 1

2
) +∑𝚤∈⟨𝑖𝐿:𝑛⟩ 𝑃𝐶,𝑙𝑜 (𝚤, 𝑗 − 1

2
)) inside.

Then we computes a prefix-sum to obtain 𝛿 (𝑖𝐿, 𝑗) −𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for
𝑗 ∈ [˜𝑓 (𝑖 + 1)𝐿 :

˜𝑓 (𝑖)𝐿). We can finally obtain 𝛿 (𝑖𝐿, 𝑗) by adding

𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) back. Lines 2–8 of Algorithm 2 is used for computing

the input of Algorithm 1.

For each 𝑖 ∈ [0 :
𝑛
𝐿
], it takes 𝑂 ((˜𝑓 (𝑖) − ˜𝑓 (𝑖 + 1))𝐿) work and

𝑂 (log𝑛) span. In total, computing 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿) for all 𝑖 ∈ [0 : 𝑛
𝐿
]

and 𝑘 + 1 ∈ [˜𝑓 (𝑖 + 1) : ˜𝑓 (𝑖)) takes 𝑂 (𝑛) work and 𝑂 (log𝑛) span.
This gives us the following lemma:

Algorithm 2 Identifying 𝑓 using
˜𝑓 .

Input: (𝑖, ˜𝑓 (𝑖)) and 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for 𝑖 ∈ [0 : 𝑛
𝐿
].

Output: 𝑓 (𝑗) for 𝑗 ∈ [0, 𝑛].
1: function computeFirstIndex()

2: for 𝑖 ∈ [0, 𝑛
𝐿
)

3: for 𝑗 ∈ [˜𝑓 (𝑖 + 1)𝐿 :
˜𝑓 (𝑖)𝐿)

4: Δ(𝑗) = ∑
𝚤∈⟨0:𝑖𝐿⟩ 𝑃𝐶,ℎ𝑖 (𝚤, 𝑗) +

∑
𝚤∈⟨𝑖𝐿:𝑛⟩ 𝑃𝐶,𝑙𝑜 (𝚤, 𝑗)

5: Δ(˜𝑓 (𝑖)𝐿) = 0

6: for 𝑗 from ˜𝑓 (𝑖)𝐿 − 1 downto ˜𝑓 (𝑖 + 1)𝐿
7: Δ(𝑗) ← Δ(𝑗 + 1) + Δ(𝑗)
8: 𝛿 (𝑖𝐿, 𝑗) = 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) − Δ(𝑗)
9: for 𝑘 ∈ [˜𝑓 (𝑖 + 1) − 1 : ˜𝑓 (𝑖))
10: IdentifyGrid((𝑖𝐿, (𝑘 + 1)𝐿), 𝛿 (𝑖𝐿, (𝑘 + 1)𝐿))
11: IdentifyGrid((𝑛, ˜𝑓 (𝑛

𝐿
)𝐿), 𝛿 (𝑛, ˜𝑓 (𝑛

𝐿
)𝐿)) ⊲ For the last row.

Lemma 3.8. Given two 𝑛 ×𝑛 sized sub-permutation matrices 𝑃𝐶,ℎ𝑖
and 𝑃𝐶,𝑙𝑜 , assume that we have already obtained all approximate in-
dices ˜𝑓 (𝑖) and 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for all 𝑖 ∈ [0 : 𝑛

𝐿
], then there exists a deter-

ministic algorithm that computes 𝛿 (𝑖𝐿, (𝑘+1)𝐿) for 𝑖 ∈ [0, 𝑛
𝐿
], 𝑘+1 ∈

[˜𝑓 (𝑖 + 1) : ˜𝑓 (𝑖)] in 𝑂 (𝑛) work and 𝑂 (log𝑛 + 𝐿) span. □

Parallel Implementation of Main Algorithm

Proof of Theorem 3.4. Given vector
˜𝑓 (𝑖) and (𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for

𝑖 ∈ [0, 𝑛
𝐿
], we now discuss each of the main steps of solving the

implicit subunit-Monge matrix multiplication in the EREW PRAM

model. First, we use Algorithm 2 to compute 𝑓 . For each 𝑖 ∈ [0 : 𝑛
𝐿
),

we initialize a vector of length
˜𝑓 (𝑖)𝐿− ˜𝑓 (𝑖+1)𝐿+1 forΔ. Initialization

takes 𝑂 (𝑛) work and 𝑂 (1) span in total. For each 𝑖 ∈ [0 :
𝑛
𝐿
) and

𝑗 ∈ [˜𝑓 (𝑖 +1)𝐿 :
˜𝑓 (𝑖)𝐿), we can query Δ(𝑗) independently. Note that

𝑗 starts from ˜𝑓 (𝑖 + 1)𝐿, but we can shift the index by
˜𝑓 (𝑖 + 1)𝐿 and

then the starting index of Δ will be 0. Next, we can use the prefix

sum to compute Δ(𝑗) ← Δ(𝑗 + 1) +Δ(𝑗). The prefix sum over𝑂 (𝑛)
terms takes 𝑂 (𝑛) work and 𝑂 (log𝑛) span.

Oncewe compute all possible grid cells (𝑖𝐿, (𝑘+1)𝐿) and𝛿 (𝑖𝐿, (𝑘+
1)𝐿), we call Algorithm 1 to compute 𝑓 . Since each (𝑗, 𝑓 (𝑗)) will be
located in exactly one grid cell, there will be no concurrent writes

when we write the 𝑓 (𝑗) values. To compute the neighboring 𝛿 , Al-

gorithm 2 might query the same 𝑃𝐶,ℎ𝑖 (𝚤, 𝚥) for several different grid
cells. However, in the EREW PRAM model, different processors

are not allowed to read the same entry simultaneously. To avoid

such potential concurrent reads, we can attach the necessary 𝑃𝐶,ℎ𝑖
and 𝑃𝐶,𝑙𝑜 terms to the grid when we call Algorithm 1. We have at

most 𝑂 (𝑛
𝐿
) possible grids for Algorithm 1, so we at most attach

𝑂 (𝑛) rows and columns of 𝑃𝐶,ℎ𝑖 and 𝑃𝐶,𝑙𝑜 and this can be done

with𝑂 (𝑛) work and𝑂 (log𝑛) span. In total, Algorithm 2 takes𝑂 (𝑛)
work and 𝑂 (𝐿 + log𝑛) span.

Using 𝑓 (𝑗) for all 𝑗 ∈ [0, 𝑛], the algorithm can set up the non-

zero terms of 𝑃𝐶 by itself for (3.1a) and (3.1b) . For (3.1c) and fixed 𝚤,

there is one
ˆ𝑘 such that 𝛿 (𝚤 + 1

2
, ˆ𝑘 + 1

2
) > 0 and 𝛿 (𝚤 + 1

2
, ˆ𝑘 − 1

2
) = 0.

The last point is that based on the Lemma 2.1, 𝑃𝐶 is also a subunit-

Monge matrix, so we do not need to worry about collision when

we read or write. Combining Lemma 3.5 and setting 𝐿 = 𝑂 (log2 𝑛)
gives Theorem 3.4. □

255

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Nairen Cao, Shang-En Huang, and Hsin-Hao Su

Figure 4: An example of Q𝑐 . 𝐿 = 3. The red circles are non-

zero terms of 𝑃𝐶,𝑙𝑜 . The blue squares are non-zero terms of

𝑃𝐶,ℎ𝑖 . Q𝑐 (𝑃ℎ𝑖 , 1, 2) counts blue squares in the blue region and

Q𝑐 (𝑃𝑙𝑜 , 1, 2) counts red circles in the red region.

3.3 Computing approximate index
˜𝑓

Mini-Batch Query Oracle. We need an oracle to support count-

ing queries for some type of rectangle. More Formally, Given sub-

permutation matrices 𝑃ℎ𝑖 and 𝑃𝑙𝑜 , we need to support the following

queries:

• For sub-permutation matrix 𝑃ℎ𝑖 , Q𝑟 (𝑃ℎ𝑖 , 𝑖, 𝑗) returns∑
𝚤∈⟨ (𝑖−1)𝐿:𝑖𝐿⟩, 𝚥∈⟨0:𝑗𝐿⟩ 𝑃ℎ𝑖 (𝚤, 𝚥), i.e, the number of non-zero

elements of 𝑃ℎ𝑖 (𝚤, 𝚥), where (𝚤, 𝚥) ∈ ⟨(𝑖 − 1)𝐿 : 𝑖𝐿⟩ × ⟨0 : 𝑗𝐿⟩.
The 𝑟 in the Q𝑟 means to query grid rows.

• For sub-permutation matrix 𝑃𝑙𝑜 , Q𝑟 (𝑃𝑙𝑜 , 𝑖, 𝑗) returns∑
𝚤∈⟨ (𝑖−1)𝐿:𝑖𝐿⟩, 𝚥∈⟨ 𝑗𝐿:𝑛⟩ 𝑃𝑙𝑜 (𝚤, 𝚥),

• For sub-permutation matrix 𝑃ℎ𝑖 , Q𝑐 (𝑃ℎ𝑖 , 𝑖, 𝑗) returns∑
𝚤∈⟨0:𝑖𝐿⟩, 𝚥∈⟨ (𝑗−1)𝐿:𝑗𝐿⟩ 𝑃 (𝚤, 𝚥), i.e, the number of non-zero el-

ements of 𝑃ℎ𝑖 with index in the rectangle ⟨0 : 𝑖𝐿⟩ × ⟨(𝑗 −1)𝐿 :

𝑗𝐿⟩.
• For sub-permutation matrix 𝑃𝑙𝑜 , Q𝑐 (𝑃𝑙𝑜 , 𝑖, 𝑗) returns∑

𝚤∈⟨𝑖𝐿:𝑛⟩, 𝚥∈⟨ (𝑗−1)𝐿:𝑗𝐿⟩ 𝑃𝑙𝑜 (𝚤, 𝚥).
See Figure 4 forQ𝑐 query example. All oracles can be constructed

and queried in a similar way. We use Q𝑐 (𝑃ℎ𝑖 , 𝑖, 𝑗) for example. Note

that 𝑃ℎ𝑖 is a sub-permutation matrix, and there will be at most 𝐿

non-zero terms for 𝑃ℎ𝑖 in the rectangle ⟨0 : 𝑛⟩ × ⟨(𝑗 − 1)𝐿 : 𝑗𝐿⟩.
We can sort those elements based on their row index, which takes

𝑂 (𝐿 log𝐿) work and𝑂 (log𝐿) span to sort for a fixed 𝑗 . Since there

are
𝑛
𝐿
different 𝑗 values, sorting for all 𝑗 takes 𝑂 (𝑛 log𝐿) work and

𝑂 (log𝐿) span. To query, we can use binary search in the sorted

array, which takes𝑂 (log𝐿) work and𝑂 (log𝐿) span to answer one

query. Later, we will show a faster way to construct such a data

structure.

Now we show that using Q, we can compute
˜𝑓 .

Algorithm Description. computeappIndex([𝑖𝑙𝑜 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 : 𝑘ℎ𝑖])
computes

˜𝑓 (𝑖) and 𝛿 (𝑖𝐿, ˜𝑓 (𝑖)𝐿) for 𝑖 ∈ [𝑖𝑙𝑜 , 𝑖ℎ𝑖]. Before we call

computeappIndex([𝑖𝑙𝑜 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 : 𝑘ℎ𝑖]), we require that
• 𝛿 (𝑖𝐿, 𝑘𝑙𝑜𝐿) for 𝑖 ∈ (𝑖𝑙𝑜 : 𝑖ℎ𝑖]
• 𝛿 (𝑖𝑙𝑜𝐿, 𝑘𝐿) for 𝑘 ∈ (𝑘𝑙𝑜 : 𝑘ℎ𝑖]

Algorithm 3 Computing
˜𝑓 (𝑖) for 𝑖 ∈ [0, 𝑛

𝐿
]

Input: A rectangle [𝑖𝑙𝑜𝐿 : 𝑖ℎ𝑖𝐿] × [𝑘ℎ𝑖𝐿 : 𝑘𝑙𝑜𝐿]; 𝛿 (𝑖𝐿, 𝑘𝑙𝑜𝐿) for
𝑖 ∈ (𝑖𝑙𝑜 : 𝑖ℎ𝑖], 𝛿 (𝑖𝑙𝑜𝐿, 𝑘𝐿) for 𝑘 ∈ (𝑘𝑙𝑜 : 𝑘ℎ𝑖]. For the space reason,
we ignore the 𝛿 in Line 1 below.

Output:
˜𝑓 (𝑗) and 𝛿 (𝑗𝐿, ˜𝑓 (𝑗)𝐿) for 𝑗 ∈ [𝑖𝑙𝑜 : 𝑖ℎ𝑖].

1: function computeappIndex([𝑖𝑙𝑜 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 : 𝑘ℎ𝑖])
2: if 𝑖𝑙𝑜 > 𝑖ℎ𝑖 then return

3: 𝑖𝑚𝑖𝑑 ← ⌊(𝑖𝑙𝑜 + 𝑖ℎ𝑖)/2⌋
4: ⊲ Compute 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) for 𝑘 ∈ (𝑘𝑙𝑜 : 𝑘ℎ𝑖]
5: for 𝑘 ∈ (𝑘𝑙𝑜 : 𝑘ℎ𝑖]
6: Δ(𝑘) ← Q𝑐 (𝑃ℎ𝑖 , 𝑖𝑚𝑖𝑑 , 𝑘) + Q𝑐 (𝑃𝑙𝑜 , 𝑖𝑚𝑖𝑑 , 𝑘)
7: Δ(𝑘𝑙𝑜) ← 0

8: for 𝑘 ∈ (𝑘𝑙𝑜 : 𝑘ℎ𝑖]
9: Δ(𝑘) ← Δ(𝑘 − 1) + Δ(𝑘)
10: 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) ← 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝑙𝑜𝐿) + Δ(𝑘)
11: ⊲ Compute

˜𝑓 (𝑖𝑚𝑖𝑑)
12: for 𝑘 from 𝑘𝑙𝑜 upto 𝑘ℎ𝑖
13: if 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) > 0 then

˜𝑓 (𝑖𝑚𝑖𝑑) = 𝑘 , break

14: if 𝑘 = 𝑛
𝐿
then

˜𝑓 (𝑖𝑚𝑖𝑑) = 𝑘

15: ⊲ Compute 𝛿 (𝑖𝐿, ˜𝑓 (𝑖𝑚𝑖𝑑)𝐿) for 𝑖 ∈ [𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑]
16: for 𝑖 ∈ (𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑]
17: Δ(𝑘) ← Q𝑟 (𝑃ℎ𝑖 , 𝑖, ˜𝑓 (𝑖𝑚𝑖𝑑)) + Q𝑟 (𝑃𝑙𝑜 , 𝑖, ˜𝑓 (𝑖𝑚𝑖𝑑))
18: Δ(𝑖𝑙𝑜) ← 0

19: for 𝑖 ∈ (𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑]
20: Δ(𝑖) ← Δ(𝑖 − 1) + Δ(𝑖)
21: 𝛿 (𝑖𝐿, ˜𝑓 (𝑖𝑚𝑖𝑑)𝐿) ← 𝛿 (𝑖𝑙𝑜𝐿, ˜𝑓 (𝑖𝑚𝑖𝑑)𝐿) + Δ(𝑖)
22: computeappIndex([𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑 − 1], [˜𝑓 (𝑖𝑚𝑖𝑑) : 𝑘ℎ𝑖])
23: computeappIndex([𝑖𝑚𝑖𝑑 + 1 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 :

˜𝑓 (𝑖𝑚𝑖𝑑)])

have been computed. We first compute the middle row index 𝑖𝑚𝑖𝑑 ,

then based on 𝛿 (𝑖𝐿, 𝑘𝑙𝑜𝐿), Lines 5–10 is to compute 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿)
for 𝑘 ∈ (𝑘𝑙𝑜 , 𝑘ℎ𝑖]. We will set

˜𝑓 (𝑖𝑚𝑖𝑑) to be the smallest integer 𝑘

such that 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) > 0. If no such integer exists, we set
˜𝑓 (𝑖𝑚𝑖𝑑)

to
𝑛
𝐿
. Based on Lemma (3.6a), for 𝑗 < 𝑖𝑚𝑖𝑑 , we have

˜𝑓 (𝑗) ≥ ˜𝑓 (𝑖𝑚𝑖𝑑)
and for 𝑗 > 𝑖𝑚𝑖𝑑 , we have

˜𝑓 (𝑗) ≤ ˜𝑓 (𝑖𝑚𝑖𝑑). We can reduce the

search area to two rectangles [𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑 − 1] × [˜𝑓 (𝑖𝑚𝑖𝑑) : 𝑘ℎ𝑖] and
[𝑖𝑚𝑖𝑑 + 1 : 𝑖ℎ𝑖] × [𝑘𝑙𝑜 :

˜𝑓 (𝑖𝑚𝑖𝑑)]. Since we require the top and left 𝛿

value for the rectangle [𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑 − 1] × [˜𝑓 (𝑖𝑚𝑖𝑑) : 𝑘ℎ𝑖], lines 12–21
are used to compute the 𝛿 (𝑖𝐿, ˜𝑓 (𝑖𝑚𝑖𝑑)𝐿), where 𝑖 ∈ [𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑 − 1].
See Figure 5 for an illustration.

We will call computeappIndex([0 : 𝑛
𝐿
], [0 : 𝑛

𝐿
]) to compute

˜𝑓 (𝑗),
where 𝑗 ∈ [0 :

𝑛
𝐿
]. To show the correctness of the algorithm, we

first give the following invariant.

Lemma 3.9. When we call computeappIndex([𝑖𝑙𝑜 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 :

𝑘ℎ𝑖]), we have already computed

• 𝛿 (𝑖𝐿, 𝑘𝑙𝑜𝐿) for 𝑖 ∈ [𝑖𝑙𝑜 : 𝑖ℎ𝑖], and
• 𝛿 (𝑖𝑙𝑜𝐿, 𝑘𝐿) for 𝑘 ∈ [𝑘𝑙𝑜 : 𝑘ℎ𝑖].

In addition, ˜𝑓 (𝑖) ∈ [𝑘𝑙𝑜𝐿, 𝑘ℎ𝑖𝐿] for all 𝑖 ∈ [𝑖𝑙𝑜 , 𝑖ℎ𝑖] .

Proof. Assuming that we already computed the corresponding

𝛿 when we call computeappIndex([𝑖𝑙𝑜 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 : 𝑘ℎ𝑖]), we need
to show that when we call the subproblem, the corresponding 𝛿 is

256

Nearly Optimal Parallel Algorithms for Longest Increasing Subsequence SPAA ’23, June 17–19, 2023, Orlando, FL, USA

iloL

ihiL

kloL khiL

∆
(k

h
i)

∆
(k

lo
+
1)

∆
(k

lo
+
2)

...

imidL imidL

f̃ (imid)L

∆(ilo + 1)...
∆(imid − 1)

Recursion

Recursion

Figure 5: An illustration of Algorithm 3. In the left subfigure, we call computeappIndex on [𝑖𝑙𝑜 : 𝑖ℎ𝑖], [𝑘𝑙𝑜 : 𝑘ℎ𝑖]. Then in the

middle subfigure, we first compute 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) using the oracle Q𝑐 , where 𝑘 ∈ [𝑘𝑙𝑜 : 𝑘ℎ𝑖]. Then we can use those 𝛿 to derive

˜𝑓 (𝑖𝑚𝑖𝑑). In the right subfigure, we recurse on the subproblems.

correctly computed. First, we show that 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) is correctly
computed. Note that for 𝑘 ∈ (𝑘𝑙𝑜 , 𝑘ℎ𝑖],

𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿) − 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝑙𝑜𝐿)

=
∑︁

𝚤∈⟨0:𝑖𝑚𝑖𝑑𝐿⟩,
𝚥∈⟨𝑘𝑙𝑜𝐿:𝑘𝐿⟩

𝑃𝐶,ℎ𝑖 (𝚤, 𝚥) +
∑︁

𝚤∈⟨𝑖𝑚𝑖𝑑𝐿:𝑛⟩,
𝚥∈⟨𝑘𝑙𝑜𝐿:𝑘𝐿⟩

𝑃𝐶,𝑙𝑜 (𝚤, 𝚥)

=
∑︁

𝑘 ′∈ (𝑘𝑙𝑜 ,𝑘]

(∑︁
𝚤∈⟨0:𝑖𝑚𝑖𝑑𝐿⟩,

𝚥∈⟨ (𝑘 ′−1)𝐿:𝑘 ′𝐿⟩

𝑃𝐶,ℎ𝑖 (𝚤, 𝚥) +
∑︁

𝚤∈⟨𝑖𝑚𝑖𝑑𝐿:𝑛⟩,
𝚥∈⟨ (𝑘 ′−1)𝐿:𝑘 ′𝐿⟩

𝑃𝐶,𝑙𝑜 (𝚤, 𝚥)
)

=
∑︁

𝑘 ′∈ (𝑘𝑙𝑜 ,𝑘]

(
Q𝑐 (𝑃ℎ𝑖 , 𝑖𝑚𝑖𝑑 , 𝑘) + Q𝑐 (𝑃𝑙𝑜 , 𝑖𝑚𝑖𝑑 , 𝑘)

)
.

In line 9, we set Δ(𝑘) to be the above quantity via the prefix sum.

Based on the assumption, we have 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝑙𝑜𝐿) and 𝛿 (𝑖𝑚𝑖𝑑𝐿, 𝑘𝐿)
correctly computed. Since we also assume that

˜𝑓 (𝑖𝑚𝑖𝑑) ∈ [𝑖𝑙𝑜 , 𝑖ℎ𝑖],
the first positive term index or

𝑛
𝐿
must be

˜𝑓 (𝑖𝑚𝑖𝑑). From Lemma

(3.6a), we know that
˜𝑓 (𝑗) ∈ [˜𝑓 (𝑖𝑚𝑖𝑑), 𝑖ℎ𝑖] for 𝑗 ∈ [𝑖𝑙𝑜 , 𝑖𝑚𝑖𝑑 − 1] and

˜𝑓 (𝑗) ∈ [𝑖𝑙𝑜 , ˜𝑓 (𝑖𝑚𝑖𝑑)] for 𝑗 ∈ [𝑖𝑚𝑖𝑑 + 1, 𝑖ℎ𝑖].
To enable recursion, several new 𝛿 entries should be computed be-

fore invoking the recursive calls. For computeappIndex([𝑖𝑚𝑖𝑑 + 1 :
𝑖ℎ𝑖], [𝑘𝑙𝑜 :

˜𝑓 (𝑖𝑚𝑖𝑑)]), we already computed the left and top line

𝛿 value. Lines 12–21 compute 𝛿 (𝑖𝐿, ˜𝑓 (𝑖𝑚𝑖𝑑)𝐿) for computeappIn-
dex([𝑖𝑙𝑜 : 𝑖𝑚𝑖𝑑 − 1], [˜𝑓 (𝑖𝑚𝑖𝑑) : 𝑘ℎ𝑖]). The correctness follows from
the correctness of lines 5–10 so we omit the repeated details here.

□

The correctness of Algorithm 3 follows from Lemma 3.9. In each

step, we can compute
˜𝑓 (𝑖𝑚𝑖𝑑) and we will transverse all 𝑖𝑚𝑖𝑑 ∈

[0, 𝑛
𝐿
]. The running time not only depends on Algorithm 3, but

also depends on the oracle Q. In next section, we will show we can

construct Q in 𝑂 (𝑛) work.

Mini-Batch Query Oracle

Throughout the execution of the algorithm, an important step is

to count the number of elements within a thin strip of width 𝐿 =

Ω(log𝑛 log log𝑛), i.e, construct the oracle Q. The simplest way to

achieve this is to partition the input permutation into size 𝐿 mini-

batches, and sort the numbers within each mini-batch in increasing

order. To answer the range query, the algorithm performs two

binary searches in 𝑂 (log𝐿) time. To preprocess each mini-batch,

we may use the signature sorting algorithm from Andersson et

al. [3] to obtain a randomized linear work sorting algorithm.

Theorem 3.10 (A simple case from [3]). Let 𝐴 be an array of 𝐿
integers. There exists a Monte Carlo algorithm on an EREW PRAM
model supporting AC0operations with word size 𝑍 = Ω(log3 𝐿), such
that with probability at least 1 − 1/𝐿, the algorithm sorts 𝐴 in 𝑂 (𝐿)
work and 𝑂 (log𝐿 log𝑍) time4.

Lemma 3.11. Let 𝐿 = Ω(log𝑛 log log𝑛). Consider 𝑛
𝐿
groups of

integers where each group has 𝐿 elements. Then there exists an EREW
PRAM algorithm with AC0operations on word size 𝑍 = Θ(log𝑛)
such that, with probability 1 − 𝑛−10, the algorithm sorts all groups of
integers in 𝑂 (𝑛) work and 𝑂 ((log log𝑛)2) time.

Proof. It suffices to perform a two-phase algorithm. In the first

phase, we apply signature sort (Theorem 3.10) to each group. The

algorithm then checks whether or not each group is sorted in 𝑂 (1)
time and𝑂 (𝑛) work. In the second phase, the algorithm applies any

standard deterministic sorting to the groups where they are not

yet sorted. For example, we can use the AKS sorting network [2]

which sorts each group deterministically in 𝑂 (𝐿 log𝐿) work and

𝑂 (log𝐿) time. By Theorem 3.10 and a standard Chernoff bound,

with probability 1 − 𝑛−10, there are at most 𝑂 (𝑛 log𝑛/𝐿2) groups
that are not sorted. Therefore, the second phase takes only𝑂 (𝑛 log𝑛

𝐿2
·

(𝐿 log𝐿)) = 𝑂 (𝑛) work and 𝑂 (log𝐿) = 𝑂 (log log𝑛) time. □

Finally, we are able to analyze the work and span of Algorithm 3

and then prove Lemma 3.5.

Work and Span Analysis

The total work to the step satisfies the following recurrence relation:

W (ℎ,𝑑) = W (ℎ/2, 𝑥 + 1) +W (ℎ/2, 𝑑 − 𝑥) +𝑂 ((𝑑 + ℎ) · log𝐿)
where ℎ = 𝑖ℎ𝑖 − 𝑖𝑙𝑜 and 𝑑 = 𝑘ℎ𝑖 − 𝑘𝑙𝑜 and 𝑥 ∈ [0, 𝑑). The 𝑂 ((𝑑 +
ℎ) log𝐿) term comes from the fact that we need to query Q 𝑂 (𝑑 +ℎ)
times and each query takes 𝑂 (log𝐿) time. The above expression

solves to W (ℎ,𝑑) = 𝑂 ((ℎ + 𝑑) logℎ log𝐿). By applying ℎ = 𝑑 = 𝑛
𝐿

we obtain a total work of 𝑂 (𝑛
𝐿
log𝑛 log𝐿) for Algorithm 3. Notice

that we still need to construct the oracle Q. Based on Lemma 3.11,

the construction of Q takes 𝑂 (𝑛 log log𝑛) work for deterministic

4
If we allow constant time multiplications, then the signature sort runs in only

𝑂 (log𝐿) time.

257

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Nairen Cao, Shang-En Huang, and Hsin-Hao Su

algorithm and 𝑂 (𝑛) work for randomized algorithm when 𝐿 =

Ω(log𝑛 log log𝑛).
As for the span, constructing Q has 𝑂 ((log log𝑛)2) span by

Lemma 3.11 so it is not a bottleneck. The span of Algorithm 3

satisfies the following recurrence relation: S(ℎ,𝑑) ≤ S(ℎ/2, 𝑑) +
𝑂 (logℎ + log𝑑 + log𝐿), which solves to S(ℎ,𝑑) = 𝑂 (logℎ(logℎ +
log𝑑 + log𝐿)). Whenever ℎ = 𝑑 = 𝑛

𝐿
this is 𝑂 (log2 𝑛).

Proof of Lemma 3.5. Algorithm 3 is naturally parallelized, and

exclusive reads are achievable. Whenever the algorithm makes

queries to Q, it will never query the same columns or rows, so

concurrent read operations are not required. Furthermore,
˜𝑓 (𝑖𝑚𝑖𝑑)

is updated once, so there will be no concurrent write operations.

Setting 𝐿 = Ω(log𝑛 log log𝑛) gives us Lemma 3.5. □

4 COMPUTING LIS WITH SUBUNIT-MONGE

MATRIX MULTIPLICATION

In this section, we will explain the connection between the LIS

problem and implicit subunit-Monge matrix multiplication ⊡. We

will give more details of Theorem 1.2.

Let𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑚) be any partial permutation of [𝑛]. That is,
for any 𝑖 we have 𝑎𝑖 ∈ [𝑛] and for any 𝑖 ≠ 𝑗 we have 𝑎𝑖 ≠ 𝑎 𝑗 . Recall

that the filtered sequence𝐴𝑖, 𝑗 is the subsequence of𝐴 whose values

are all within the range [𝑖 : 𝑗] and 𝐿𝐼𝑆 (𝐴𝑖, 𝑗) is the length of LIS of

𝐴𝑖, 𝑗 . Let𝑀
Σ
𝐴
(𝑖, 𝑗) = 𝑗−𝑖−LIS(𝐴𝑖+1, 𝑗) whenever 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 0

otherwise. Let 𝐿 = (𝑎1, 𝑎2, . . . , 𝑎⌊𝑚/2⌋) and 𝑅 = (𝑎⌊𝑚/2⌋+1, . . . , 𝑎𝑚).
The following lemma explains that the matrix𝑀Σ

𝐴
can be obtained

from the (min, +)-matrix multiplication of𝑀Σ
𝐿
and𝑀Σ

𝑅
.

Lemma 4.1. For any 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, we have

𝑀Σ
𝐴 (𝑖, 𝑗) = min

0≤𝑘≤𝑛
{𝑀Σ

𝐿 (𝑖, 𝑘) +𝑀
Σ
𝑅 (𝑘, 𝑗)}.

Proof. We view𝑀Σ
𝐴
(𝑖, 𝑗) as the minimum number of elements

that have to be kicked out in order to obtain an increasing sequence

from the affixed filtered subsequence 𝐴′
𝑖+1, 𝑗 , which is defined to be

the filtered subsequence 𝐴𝑖+1, 𝑗 attached with 𝑗 − 𝑖 − |𝐴𝑖+1, 𝑗 | must-

be-deleted dummy elements. Then the lemma follows by a standard

shortest path argument. □

A celebrated result from Tiskin [33] is that 𝑀Σ
𝐴
is actually a

distribution matrix of an 𝑛 × 𝑛 sub-permutation matrix 𝑃𝐴 .

Lemma 4.2 ([33]). Fix an integer 𝑛. For any partial permutation 𝐴
of [𝑛], there is a sub-permutation matrix 𝑃𝐴 such that𝑀Σ

𝐴
= 𝑃Σ

𝐴
. □

By applying Lemma 4.2 to Lemma 4.1, we know that whenever

𝐴 = 𝐿 ◦𝑅 then 𝑃𝐴 = 𝑃𝐿 ⊡𝑃𝑅 . To enable efficient divide and conquer

algorithm, the algorithm must be able to reduce the size of the

sub-permutation matrices 𝑃𝐿 and 𝑃𝑅 . The following lemma shows

that whenever𝑚 < 𝑛 we can inductively relabel the elements in 𝐴.

Lemma 4.3 ([33]). Let 𝐴 be any partial permutation of [𝑛]. Then
for any half integer 𝚤 ∈ ⟨0 : 𝑛⟩, 𝑃𝐴 (𝚤, 𝚤) = 1 if and only if 𝑖 = 𝚤 + 1

2

does not appear in 𝐴. Suppose in addition that 𝑖 is not in 𝐴. Let 𝐴′

be a partial permutation of [𝑛 − 1], by taking a copy of 𝐴 and then
decreasing all elements greater than 𝑖 by one. Then, the corresponding
sub-permutation matrix 𝑃𝐴′ is obtained by removing the 𝚤-th row and
the 𝚤-th column from 𝑃𝐴 . □

Proof of Theorem 1.2. Consider a permutation𝐴 of [𝑛]. With-

out loss of generality we assume that 𝑛 is a power of 2. The algo-

rithm obtains 𝑃𝐴 through the following divide and conquer method.

Divide. The algorithm first splits𝐴 into two halves𝐴 = 𝐴𝑙𝑜 ◦𝐴ℎ𝑖 .

After relabeling 𝐴𝑙𝑜 and 𝐴ℎ𝑖 we obtain permutations 𝐴′
𝑙𝑜

and 𝐴′
ℎ𝑖

of [𝑛/2]. This can be done in 𝑂 (𝑛) work and 𝑂 (log𝑛) span.
Conquer. Then, the algorithm invokes recursive calls to both𝐴′

𝑙𝑜
and 𝐴′

ℎ𝑖
and obtains two (𝑛/2) × (𝑛/2) sub-permutation matrices

𝑃𝐴′
𝑙𝑜
and 𝑃𝐴′

ℎ𝑖
.

Combine. Using Lemma 4.3, the algorithm recovers 𝑃𝐴𝑙𝑜
and

𝑃𝐴ℎ𝑖
, and then apply the⊡ operationwhich takes a total of𝑂 (𝑊 (𝑛)+

𝑛) work and 𝑂 (𝑆 (𝑛) + log𝑛) span.
Base Case. The base case contains a single element, where we

can set up 𝑃 (1
2
, 1
2
) = 1 directly.

Reporting the Length of LIS and the Analysis. In the end, the length
of LIS can be obtained by inspecting the cell𝑀Σ

𝐴
(0, 𝑛), which can be

obtained by counting non-zero elements of 𝑃𝐴 . It is straightforward

to check that the algorithm takes𝑂 (𝑊 (𝑛) log𝑛 +𝑛 log𝑛) work and
𝑂 (𝑆 (𝑛) log𝑛 + log2 𝑛) span. □

The above divide and conquer algorithm only returns the length

of LIS. Now we give another recursive algorithm that returns an

LIS using the intermediate results.

Reporting LIS

To illustrate the algorithm,we first label each subproblem during the

computation of the LIS length. In particular, the 𝑟 -th subproblem of

recursion depth 𝑑 can be labelled by a pair of integers (𝑑, 𝑟), where
𝑑 ∈ [0 : log𝑛] and 𝑟 ∈ [0 : 2

𝑑). Let the consecutive subsequence
used for this subproblem to be 𝑋 (𝑑, 𝑟) = (𝑎start , 𝑎start+1, ..., 𝑎end),
where start = 𝑟 · (𝑛/2𝑑), end = (𝑟 + 1) · (𝑛/2𝑑) − 1. We note that the

algorithm does not work directly with 𝑋 (𝑑, 𝑟). In the divide step,

the algorithm relabeled the values before recursion, which results

in the corresponding permutation 𝑋 ′ (𝑑, 𝑟) of {1, 2, . . . , 𝑛/2𝑑 }. At
the subproblem (𝑑, 𝑟), the algorithm returns the sub-permutation

matrix 𝑃𝑋 ′ (𝑑,𝑟) . These sub-permutation matrices are used for re-

constructing𝑀Σ
𝑋 ′ (𝑑,𝑟) implicitly, which are useful for us.

The algorithm starts with (𝑖, 𝑗, 𝑑, 𝑟) := (0, 𝑛, 0, 0). That is, we are
looking for what constitutes the value𝑀Σ

𝐴
(0, 𝑛) of the input permu-

tation 𝐴 = 𝑋 (0, 0). Using Lemma 4.1, the algorithm is able to iden-

tify the argmin index 𝑘 such that𝑀Σ
𝐴
(𝑖, 𝑗) = 𝑀Σ

𝐴𝑙𝑜
(𝑖, 𝑘) +𝑀Σ

𝐴ℎ𝑖
(𝑘, 𝑗),

where 𝐴 = 𝐴𝑙𝑜 ◦ 𝐴ℎ𝑖 is split into two halves. Notice that now

𝐴′
𝑙𝑜

= 𝑋 ′ (𝑑 + 1, 2𝑟) and 𝐴′
ℎ𝑖

= 𝑋 ′ (𝑑 + 1, 2𝑟 + 1). Before invoking
the recursive call, the algorithm calculates the corresponding new

indices (𝑖′, 𝑘′) from (𝑖, 𝑘), and (𝑘′′, 𝑗 ′) from (𝑗, 𝑘). Then, the algo-
rithm recurses on (𝑖′, 𝑘′, 𝑑 + 1, 2𝑟) and (𝑘′′, 𝑗 ′, 𝑑 + 1, 2𝑟 + 1), seeking
for an optimal sequence in 𝐴′

𝑙𝑜
and 𝐴′

ℎ𝑖
that can be recovered (via

Lemma 4.3) and then combined into an LIS in 𝐴.

In each recursion of parameters (𝑖, 𝑗, 𝑑, 𝑟), the algorithm requires

only the 𝑖-th row of𝑀Σ
𝑋 (𝑑+1,2𝑟) and the 𝑗-th column of𝑀Σ

𝑋 (𝑑+1,2𝑟+1) .
Using the prefix sum subroutine, the algorithm can obtain the

argmin in 𝑂 (|𝑋 (𝑑, 𝑟) |) total work and 𝑂 (log |𝑋 (𝑑, 𝑟) |) = 𝑂 (log𝑛)
span. Therefore, this additional algorithm that reports an LIS takes

𝑂 (𝑛 log𝑛) total work and 𝑂 (log2 𝑛) span.

258

Nearly Optimal Parallel Algorithms for Longest Increasing Subsequence SPAA ’23, June 17–19, 2023, Orlando, FL, USA

REFERENCES

[1] Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. 1976. Bounds on the

Complexity of the Longest Common Subsequence Problem. J. ACM 23, 1 (1976),

1–12. https://doi.org/10.1145/321921.321922

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. An O(n log n) Sorting

Network. In Proceedings of the 15th Annual ACM Symposium on Theory of Comput-
ing, 25-27 April, 1983, Boston, Massachusetts, USA, David S. Johnson, Ronald Fagin,
Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H.

Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas (Eds.). ACM,

1–9. https://doi.org/10.1145/800061.808726

[3] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. 1995.

Sorting in linear time?. In Proceedings of the Twenty-Seventh Annual ACM Sym-
posium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA,
Frank Thomson Leighton and Allan Borodin (Eds.). ACM, 427–436. https:

//doi.org/10.1145/225058.225173

[4] Jinho Baik, Percy Deift, and Kurt Johansson. 1999. On the distribution of the

length of the longest increasing subsequence of random permutations. Journal
of the American Mathematical Society 12, 4 (1999), 1119–1178.

[5] Laura Baxter, Aleksey Jironkin, Richard Hickman, Jonathan Moore, Christopher

Barrington, Peter Krusche, Nigel Dyer, Vicky Buchanan-Wollaston, Alexander

Tiskin, Jim Beynon, KatherineDenby, and SaschaOtt. 2012. ConservedNoncoding

Sequences Highlight Shared Components of Regulatory Networks in Dicotyle-

donous Plants. The Plant cell 24 (10 2012). https://doi.org/10.1105/tpc.112.103010

[6] Timothy M Chan. 2007. More algorithms for all-pairs shortest paths in weighted

graphs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing. 590–598.

[7] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. 2003. A

Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Ma-

trices. SIAM J. Comput. 32, 6 (2003), 1654–1673. https://doi.org/10.1137/

S0097539702402007

[8] MaximeCrochemore and Ely Porat. 2010. Fast computation of a longest increasing

subsequence and application. Inf. Comput. 208, 9 (2010), 1054–1059. https:

//doi.org/10.1016/j.ic.2010.04.003

[9] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg.

1999. Alignment of whole genomes. Nucleic Acids Res. 27, 11 (1999), 2369–2376.
https://doi.org/10.1093/nar/27.11.2369

[10] Arthur L Delcher, Steven L Salzberg, and AdamMPhillippy. 2003. UsingMUMmer

to identify similar regions in large sequence sets. Current protocols in bioinfor-
matics 1 (2003), 10–3.

[11] Michael L. Fredman. 1975. On computing the length of longest increasing sub-

sequences. Discret. Math. 11, 1 (1975), 29–35. https://doi.org/10.1016/0012-

365X(75)90103-X

[12] James C Fu and Yu-Fei Hsieh. 2015. On the distribution of the length of the

longest increasing subsequence in a random permutation. Methodology and
Computing in Applied Probability 17, 2 (2015), 489–496.

[13] Z. Galil and K. Park. 1994. Parallel Algorithms for Dynamic Programming

Recurrences with More Than O(1) Dependency. J. Parallel and Distrib. Comput.
21, 2 (1994), 213–222. https://doi.org/10.1006/jpdc.1994.1053

[14] Thierry Garcia, Jean Frédéric Myoupo, and David Semé. 2001. A work-optimal

CGM algorithm for the LIS problem. In Proceedings of the Thirteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA 2001, Heraklion,
Crete Island, Greece, July 4-6, 2001, Arnold L. Rosenberg (Ed.). ACM, 330–331.

https://doi.org/10.1145/378580.378756

[15] Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023. Parallel

Longest Increasing Subsequence and van Emde Boas Trees. In Proceedings of the
35th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’23),
June 17–19, 2023, Orlando, FL, USA. https://doi.org/10.48550/arXiv.2208.09809

[16] Yijie Han. 2004. Deterministic sorting in𝑂 (𝑛 log log𝑛) time and linear space. J.
Algorithms 50, 1 (2004), 96–105. https://doi.org/10.1016/j.jalgor.2003.09.001

[17] Yijie Han and Tadao Takaoka. 2016. An𝑂 (𝑛3
log log𝑛/log2 𝑛) time algorithm

for all pairs shortest paths. J. Discrete Algorithms 38-41 (2016), 9–19. https:

//doi.org/10.1016/j.jda.2016.09.001

[18] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. 2017. Efficient massively parallel

methods for dynamic programming. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). ACM,

798–811. https://doi.org/10.1145/3055399.3055460

[19] Joseph F. JáJá, ChristianWormMortensen, and Qingmin Shi. 2004. Space-Efficient

and Fast Algorithms for Multidimensional Dominance Reporting and Counting.

In Algorithms and Computation, 15th International Symposium, ISAAC 2004, Hong

Kong, China, December 20-22, 2004, Proceedings (Lecture Notes in Computer Science,
Vol. 3341), Rudolf Fleischer and Gerhard Trippen (Eds.). Springer, 558–568. https:

//doi.org/10.1007/978-3-540-30551-4_49

[20] Peter Krusche and Alexander Tiskin. 2009. Parallel Longest Increasing Subse-

quences in Scalable Time and Memory. In Parallel Processing and Applied Mathe-
matics, 8th International Conference, PPAM 2009, Wroclaw, Poland, September 13-16,
2009. Revised Selected Papers, Part I (Lecture Notes in Computer Science, Vol. 6067),
Roman Wyrzykowski, Jack J. Dongarra, Konrad Karczewski, and Jerzy Was-

niewski (Eds.). Springer, 176–185. https://doi.org/10.1007/978-3-642-14390-8_19

[21] Peter Krusche and Alexander Tiskin. 2010. New algorithms for efficient parallel

string comparison. In SPAA 2010: Proceedings of the 22nd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, Thira, Santorini, Greece, June 13-
15, 2010, Friedhelm Meyer auf der Heide and Cynthia A. Phillips (Eds.). ACM,

209–216. https://doi.org/10.1145/1810479.1810521

[22] Mi Lu and Hua Lin. 1994. Parallel Algorithms for the Longest Common Sub-

sequence Problem. IEEE Trans. Parallel Distributed Syst. 5, 8 (1994), 835–848.

https://doi.org/10.1109/71.298210

[23] Amgad Madkour, Walid G. Aref, Faizan Ur Rehman, Mohamed Abdur Rahman,

and Saleh M. Basalamah. 2017. A Survey of Shortest-Path Algorithms. CoRR
abs/1705.02044 (2017). arXiv:1705.02044 http://arxiv.org/abs/1705.02044

[24] Takaaki Nakashima and Akihiro Fujiwara. 2006. A Cost Optimal Parallel Al-

gorithm for Patience Sorting. Parallel Process. Lett. 16, 1 (2006), 39–52. https:

//doi.org/10.1142/S0129626406002459

[25] Ryan O’Donnell and JohnWright. 2017. Guest Column: A Primer on the Statistics

of Longest Increasing Subsequences and Quantum States (Shortened Version).

SIGACT News 48, 3 (2017), 37–59. https://doi.org/10.1145/3138860.3138869

[26] Emma Picot, Peter Krusche, Alexander Tiskin, Isabelle Carré, and Sascha Ott.

2010. Evolutionary analysis of regulatory sequences (EARS) in plants. The Plant
Journal 64, 1 (2010), 165–176.

[27] Prakash Ramanan. 1997. Tight Ω(n lg n) lower bound for finding a longest

increasing subsequence. Int. J. Comput. Math. 65, 3-4 (1997), 161–164. https:

//doi.org/10.1080/00207169708804607

[28] Yoshifumi Sakai and Shunsuke Inenaga. 2022. A Faster Reduction of the Dy-

namic Time Warping Distance to the Longest Increasing Subsequence Length.

Algorithmica 84, 9 (2022), 2581–2596. https://doi.org/10.1007/s00453-022-00968-2
[29] David Sankoff. 1983. Time warps, string edits, and macromolecules. The Theory

and Practice of Sequence Comparison, Reading (1983).

[30] David Semé. 2006. A CGMAlgorithm Solving the Longest Increasing Subsequence

Problem. In Computational Science and Its Applications - ICCSA 2006, International
Conference, Glasgow, UK, May 8-11, 2006, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 3984), Marina L. Gavrilova, Osvaldo Gervasi, Vipin Kumar,

Chih Jeng Kenneth Tan, David Taniar, Antonio Laganà, Youngsong Mun, and

Hyunseung Choo (Eds.). Springer, 10–21. https://doi.org/10.1007/11751649_2

[31] Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequential Iterative

Algorithms Can Be Parallel and (Nearly) Work-efficient. In SPAA ’22: 34th ACM
Symposium on Parallelism in Algorithms and Architectures, Philadelphia, PA, USA,
July 11 - 14, 2022, Kunal Agrawal and I-Ting Angelina Lee (Eds.). ACM, 273–286.

https://doi.org/10.1145/3490148.3538574

[32] Yihan Sun and Guy E. Blelloch. 2019. Parallel Range, Segment and Rectangle

Queries with Augmented Maps. In Proceedings of the Twenty-First Workshop
on Algorithm Engineering and Experiments, ALENEX 2019, San Diego, CA, USA,
January 7-8, 2019, Stephen G. Kobourov and Henning Meyerhenke (Eds.). SIAM,

159–173. https://doi.org/10.1137/1.9781611975499.13

[33] Alexander Tiskin. 2007. Semi-local string comparison: algorithmic techniques

and applications. (2007). https://doi.org/10.48550/ARXIV.0707.3619

[34] Alexander Tiskin. 2008. Semi-local longest common subsequences in sub-

quadratic time. J. Discrete Algorithms 6, 4 (2008), 570–581. https://doi.org/

10.1016/j.jda.2008.07.001

[35] Alexander Tiskin. 2010. Fast Distance Multiplication of Unit-Monge Matrices.

In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, Moses Charikar

(Ed.). SIAM, 1287–1296. https://doi.org/10.1137/1.9781611973075.103

[36] Alexander Tiskin. 2015. Fast Distance Multiplication of Unit-Monge Matrices.

Algorithmica 71, 4 (2015), 859–888. https://doi.org/10.1007/s00453-013-9830-z

[37] Peter van Emde Boas. 1977. Preserving Order in a Forest in Less Than Logarithmic

Time and Linear Space. Inf. Process. Lett. 6, 3 (1977), 80–82. https://doi.org/10.

1016/0020-0190(77)90031-X

[38] Peter van Emde Boas, R. Kaas, and E. Zijlstra. 1977. Design and Implementation

of an Efficient Priority Queue. Math. Syst. Theory 10 (1977), 99–127. https:

//doi.org/10.1007/BF01683268

259

https://doi.org/10.1145/321921.321922
https://doi.org/10.1145/800061.808726
https://doi.org/10.1145/225058.225173
https://doi.org/10.1145/225058.225173
https://doi.org/10.1105/tpc.112.103010
https://doi.org/10.1137/S0097539702402007
https://doi.org/10.1137/S0097539702402007
https://doi.org/10.1016/j.ic.2010.04.003
https://doi.org/10.1016/j.ic.2010.04.003
https://doi.org/10.1093/nar/27.11.2369
https://doi.org/10.1016/0012-365X(75)90103-X
https://doi.org/10.1016/0012-365X(75)90103-X
https://doi.org/10.1006/jpdc.1994.1053
https://doi.org/10.1145/378580.378756
https://doi.org/10.48550/arXiv.2208.09809
https://doi.org/10.1016/j.jalgor.2003.09.001
https://doi.org/10.1016/j.jda.2016.09.001
https://doi.org/10.1016/j.jda.2016.09.001
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.1007/978-3-642-14390-8_19
https://doi.org/10.1145/1810479.1810521
https://doi.org/10.1109/71.298210
https://arxiv.org/abs/1705.02044
http://arxiv.org/abs/1705.02044
https://doi.org/10.1142/S0129626406002459
https://doi.org/10.1142/S0129626406002459
https://doi.org/10.1145/3138860.3138869
https://doi.org/10.1080/00207169708804607
https://doi.org/10.1080/00207169708804607
https://doi.org/10.1007/s00453-022-00968-2
https://doi.org/10.1007/11751649_2
https://doi.org/10.1145/3490148.3538574
https://doi.org/10.1137/1.9781611975499.13
https://doi.org/10.48550/ARXIV.0707.3619
https://doi.org/10.1016/j.jda.2008.07.001
https://doi.org/10.1016/j.jda.2008.07.001
https://doi.org/10.1137/1.9781611973075.103
https://doi.org/10.1007/s00453-013-9830-z
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1007/BF01683268
https://doi.org/10.1007/BF01683268

	Abstract
	1 Introduction
	1.1 LIS via Implicit Subunit-Monge Matrix Multiplication
	1.2 Our Contribution
	1.3 Related Works

	2 Preliminaries
	3 algorithm
	3.1 Overview of Krusche and Tiskin's algorithm
	3.2 Computing f
	3.3 Computing approximate index

	4 Computing LIS with Subunit-Monge Matrix Multiplication
	References

