
Brief Announcement: Nested Active-Time Scheduling
Nairen Cao

nairen@ir.cs.georgetown.edu

Georgetown University

Washington D.C., USA

Jeremy T. Fineman

jfineman@cs.georgetown.edu

Georgetown University

Washington D.C., USA

Shi Li

shil@buffalo.edu

University at Buffalo

Buffalo, New York, USA

Julián Mestre

julian.mestre@sydney.edu.au

The University of Sydney

Sydney, Australia

Katina Russell

katina.russell@cs.georgetown.edu

Georgetown University

Washington D.C., USA

Seeun William Umboh

william.umboh@sydney.edu.au

The University of Sydney

Sydney, Australia

ABSTRACT
The active-time scheduling problem considers the problem of

scheduling preemptible jobs with windows (release times and dead-

lines) on a parallel machine that can schedule up to 𝑔 jobs during

each timestep. The goal in the active-time problem is to minimize

the number of active steps, i.e., timesteps in which at least one job

is scheduled.

This paper presents a 9/5-approximation algorithm for a special

case of the active-time scheduling problem in which job windows

are laminar (nested). This result improves on the previous best

2-approximation for the general case.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms.

KEYWORDS
Scheduling algorithms

ACM Reference Format:
Nairen Cao, JeremyT. Fineman, Shi Li, JuliánMestre, Katina Russell, and Seeun

William Umboh. 2022. Brief Announcement: Nested Active-Time Schedul-

ing. In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’22), July 11–14, 2022, Philadelphia, PA, USA. ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3490148.3538554

1 INTRODUCTION
In the active-time problem [1], we are given as input an integer𝑔 and

a set 𝐽 of 𝑛 jobs, where each job 𝑗 ∈ 𝐽 has an associated processing

time 𝑝 𝑗 , release time 𝑟 𝑗 , and deadline 𝑑 𝑗 ≥ 𝑟 𝑗 + 𝑝 𝑗 , all integers. The
jobs are scheduled on a parallel machine that can execute up to 𝑔

jobs during each step. Time is organized into discrete (integer) steps

or slots, and preemption is allowed but only at slot boundaries. We

call the time interval [𝑟 𝑗 , 𝑑 𝑗) the job 𝑗 ’s window. Each job 𝑗 must

be fully scheduled within its window.

We say that a timestep 𝑡 is active if the schedule assigns at

least one job to step 𝑡 . The goal in the active-time scheduling
problem is to find a schedule with minimum number of active

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9146-7/22/07.

https://doi.org/10.1145/3490148.3538554

steps that schedule all jobs within their windows. Chang, Gabow,

and Khuller [1] and Kumar and Khuller’s [3] both achieve 2 ap-

proximation through LP rounding algorithm and greedy algorithm,

respectively.

To push past the barriers for the general version of the prob-

lem, this paper instead considers a special case of the active-time

problem in which the job windows are laminar (nested). That is,

for each pair of jobs 𝑖 , 𝑗 , either the intervals [𝑟𝑖 , 𝑑𝑖) and [𝑟 𝑗 , 𝑑 𝑗) are
disjoint (meaning either 𝑑𝑖 ≤ 𝑟 𝑗 or 𝑑 𝑗 ≤ 𝑟𝑖)), or one of the intervals
is fully contained in the other (i.e., either 𝑟𝑖 ≤ 𝑟 𝑗 < 𝑑 𝑗 ≤ 𝑑𝑖 or
𝑟 𝑗 ≤ 𝑟𝑖 < 𝑑𝑖 ≤ 𝑑 𝑗).

Our main result is a 9/5-approximation algorithm for the active-

time problem with laminar job windows. Since the simple example

exhibiting the integrality gap [2] of 2 for the natural LP is a nested

instance, a different LP formulation is needed. Our algorithm starts

by solving a stronger linear program (LP) for the problem to produce

a fractional solution, then performing a new rounding process over

the tree of job windows. The algorithm itself is not overly complex,

but the analysis is not at all straightforward.

2 PRELIMINARIES
For an integer 𝑝 , We use [𝑝] to represent integers from {1, 2, ..., 𝑝}.
Given an instance of the nested active time problem, we define its

tree 𝑇 as follows. Each tree node 𝑖 is associated with an interval

𝐾 (𝑖) such that 𝐾 (𝑖) = [𝑟 𝑗 , 𝑑 𝑗) for some 𝑗 ∈ 𝐽 . If there are several
jobs with the same interval, we only create a single tree node. A

tree node 𝑖 ′ is a child of 𝑖 if𝐾 (𝑖 ′) ⊊ 𝐾 (𝑖) and no other node interval
is strictly between 𝐾 (𝑖) and 𝐾 (𝑖 ′), i.e, there is no node 𝑖 ′′ such that

𝐾 (𝑖 ′) ⊊ 𝐾 (𝑖 ′′) ⊊ 𝐾 (𝑖). The descendants and ancestors of a node 𝑖

are denoted Des(𝑖) and Anc(𝑖), respectively. Note that both Des(𝑖)
and Anc(𝑖) include 𝑖 itself. We define par(𝑖) to be the parent node

of 𝑖 . W.l.o.g we can assume 𝑇 is indeed a tree (instead of a forest)

since otherwise the instance can be broken into several independent

ones.

We assume that the tree contains 𝑚 nodes and each node is

associated with an unique id in [𝑚]. Now, each job 𝑗 ’s interval is

associated with a node in the tree. For a job 𝑗 , define 𝑘 (𝑗) to be

the tree node 𝑖 with 𝐾 (𝑘 (𝑗)) = [𝑟 𝑗 , 𝑑 𝑗); we say 𝑗 belongs to the

node 𝑖 if 𝑖 = 𝑘 (𝑗). For jobs 𝑗1 and 𝑗2, if 𝑟 𝑗1 = 𝑟 𝑗2 and 𝑑 𝑗1 = 𝑑 𝑗2 , then
𝑘 (𝑖) = 𝑘 (𝑗). Given a node 𝑖 and a job subset 𝐽 ′ ⊆ 𝐽 , 𝐽 ′(𝑖) = { 𝑗 ∈
𝐽 ′ | 𝑘 (𝑗) = 𝑖} is the set of jobs in 𝐽 ′ belonging to 𝑖 . Note that at

least one job belongs to each node. Define the length of a node 𝑖 ,

which is denoted as 𝐿(𝑖), as the |𝐾 (𝑖) | −∑𝑖′:par(𝑖′)=𝑖 |𝐾 (𝑖 ′) |, i.e, the
number of time slots in the interval 𝐾 (𝑖), but not in 𝐾 (𝑖 ′) for any

Session 8: Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

381

https://doi.org/10.1145/3490148.3538554
https://doi.org/10.1145/3490148.3538554

min
∑︁
𝑖∈[𝑚]

𝑥 (𝑖) s.t. (1)∑︁
𝑖∈Des (𝐾 (𝑗))

𝑦 (𝑖, 𝑗) ≥ 𝑝 𝑗 , ∀𝑗 (2)∑︁
𝑗 ∈𝐽 (𝐴𝑛𝑐 (𝑖))

𝑦 (𝑖, 𝑗) ≤ 𝑔 · 𝑥 (𝑖) ∀𝑖 (3)

𝑥 (𝑖) ≤ 𝐿(𝑖) ∀𝑖 (4)

𝑦 (𝑖, 𝑗) ≤ 𝑥 (𝑖) ∀𝑖, 𝑗 (5)

𝑦 (𝑖, 𝑗) = 0 ∀𝑖, 𝑗 ∉ 𝐽 (𝐴𝑛𝑐 (𝑖)) (6)∑︁
𝑖′∈Des (𝑖)

𝑥 (𝑖 ′) ≥ 2 ∀𝑖,OPT𝑖 ≥ 2 (7)∑︁
𝑖′∈Des (𝑖)

𝑥 (𝑖 ′) ≥ 3 ∀𝑖,OPT𝑖 ≥ 3 (8)

Figure 1: Linear program for active time scheduling. By de-
fault we restrict 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝐽 .

child node 𝑖 ′ of 𝑖 . Given a function or vector 𝑓 and a set 𝑆 , we define

𝑓 (𝑆) = ⋃
𝑒∈𝑆 𝑓 (𝑒) or 𝑓 (𝑆) =

⋃
𝑒∈𝑆 𝑓𝑒 .

We say that a node 𝑖 is rigid if a feasible solution must open the

entire interval 𝐾 (𝑖). For our rounding algorithm, we will make two

extra transformations for the tree.

First, we transform an arbitrary tree to a binary tree. If a parent

node 𝑖 contains several children nodes 𝑖1, 𝑖2, ..., 𝑖𝑡 , we will create

several virtual nodes so that each node contains at most 2 children.

Each virtual node’s interval is the union of its children’s intervals.

There are no jobs associated with the virtual nodes and the length of

a virtual node 𝑖 ′ satisfying 𝐿(𝑖) = 0. Notice that this transformation

adds at most 𝑡 virtual nodes for a node with 𝑡 children. In total, this

transformation only adds 𝑘 virtual nodes to a tree that had 𝑘 nodes

originally. In the resulting tree, only internal nodes can be virtual

so each leaf node must have at least one job associated with it.

We perform one final transformation to make each leaf node

rigid. For a leaf node 𝑖 , let 𝑗 ∈ 𝐽 (𝑖) be a job in 𝑖 with the longest

processing time. If 𝑝 𝑗 = 𝐿(𝑖), then we leave 𝑖 and the jobs therein

unchanged. Otherwise, we can assume that 𝑗 is scheduled in the

first 𝑝 𝑗 steps of 𝑖 because 𝑗 is the longest job in the leaf node and

all jobs in the leaf node could choose the leaf’s interval to fit in. We

transform the instance by creating a virtual child node 𝑖 ′ of the leaf
𝑖 with interval corresponding to the first 𝑝 𝑗 steps of 𝐼 (𝑖), and we

reduce 𝑗 ’s window to match 𝑖 ′’s. Notice this transformation does

not change our solution for the original tree.

3 ALGORITHM
3.1 Linear Program
The linear program is LP (1), which is given in Figure 1. In the LP,

𝑥 (𝑖) denotes the number of time slots opened in node 𝑖 , and 𝑦 (𝑖, 𝑗)
denotes the amount of job 𝑗 that is scheduled in node 𝑖 . In the LP,

OPT𝑖 denotes the smallest number of slots to schedule the jobs in

𝐽 (Des(𝑖)).
The objective is to minimize

∑
𝑖∈[𝑚] 𝑥 (𝑖). (2) ensures that every

job 𝑗 is scheduled in at least 𝑝 𝑗 time slots. (3) ensures that the total

(a) The open slots from an LP solu-
tion

(b) The open slots after performing
the LP transformation

Figure 2: An example of a tree before and after running the
LP transformation in Lemma 1. The dark slots represent slots
have jobs scheduled in them, and the white slots are closed.

number of jobs scheduled in 𝑥 (𝑖) is at most 𝑔 · 𝑥 (𝑖), for each node

𝑖 ∈ [𝑚]. (4) requires that the number of open time slots in a node

𝑥 (𝑖) is at most the interval length 𝐿(𝑖) of node 𝑖 . (5) says that we
could give at most 𝑥 (𝑖) time slots for a job 𝑗 . (6) restricts that for

each job 𝑗 ∈ 𝐽 , 𝑗 can only be put into nodes in Des(𝐾 (𝑗)). (7) and
(8) are the key constraints that makes the LP stronger. They are

clearly valid; moreover, checking if OPT𝑖 ≥ 2 (OPT𝑖 ≥ 3) can be

done easily.

After running the LP and getting a solution (𝑥,𝑦), we will per-
form a transformation on the solution.

3.2 Transformation of LP Solution
Lemma 1. Given a feasible LP solution, we can efficiently output

another feasible LP solution such that for any pair of nodes 𝑖1, 𝑖2 such
that 𝑖2 ∈ Des+ (𝑖1), if 𝑥 (𝑖2) < 𝐿(𝑖2), then 𝑥 (𝑖1) = 0.

The high level idea of Lemma 1 is to push down some part of the

time slot if its descendant time slot is not full. We leave the proof

to our full paper. An example of of the LP transformation is shown

in Figure 2. Lemma 1 implies that for any 𝑖 with 𝑥 (𝑖) > 0, all of

its strict descendants are fully open. We let 𝐼 be the set of topmost

nodes 𝑖 with 𝑥 (𝑖) > 0; those are the nodes 𝑖 with 𝑥 (𝑖) > 0 but all its

strict ancestors 𝑖 ′ have 𝑥 (𝑖 ′) = 0. Notice that after transformation,

all nodes with fractional time slot will be in 𝐼 .

3.3 Rounding Algorithm to Obtain an Integral
Vector 𝑥 ∈ {0, 1} [𝑚]

The rounding algorithm that constructs our integral 𝑥 is given in

Algorithm 1.

Algorithm 1 Rounding Algorithm

1: let 𝑥 (𝑖) ← ⌊𝑥 (𝑖)⌋,∀𝑖 ∈ 𝐼 and 𝑥 (𝑖) ← 𝑥 (𝑖),∀𝑖 ∈ [𝑚] \ 𝐼 .
2: for every node 𝑖 ∈ Anc(𝐼) from bottom to top

3: while 9𝑥 (Des (𝑖))
5

≥ 𝑥 (Des(𝑖)) + 1
4: if ∃𝑖 ′ ∈ Des(𝑖) with 𝑥 (𝑖 ′) < 𝑥 (𝑖 ′) then
5: choose such an 𝑖 ′ arbitrarily
6: let 𝑥 (𝑖 ′) ← ⌈𝑥 (𝑖 ′)⌉
7: else
8: break

Clearly, the number of open slots is at most
9𝑥 ([𝑚])

5
.

Session 8: Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

382

Lemma 2. After running the Algorithm 1, 𝑥 ([𝑚]) ≤ 9𝑥 ([𝑚])
5

.

Notice that we might round down some fractional time slots,

which will make the new time slot infeasible. We leave the proof of

feasibility to our full paper.

4 NP-COMPLETENESS
In this section, we show that the decision version of the nested

active time problem is NP complete. Very recently, Sagnik and Man-

ish [4] showed the general case is NP complete. Unfortunately, their

proof uses crossing intervals. Our proof reduces the nested active

time problem to a new problem that we call prefix sum cover, which
is related to the classic set cover problem.

Prefix sum cover problem. For any pair of 𝑑-dimensional vectors

𝑣 = (𝑣1, 𝑣2, ..., 𝑣𝑑),𝑤 = (𝑤1,𝑤2, ...,𝑤𝑑) ∈ 𝑁𝑑 , we say 𝑣 ≺ 𝑤 if and

only if for all 𝑗 ∈ [1, 𝑑],∑𝑖≤ 𝑗 𝑣𝑖 ≥ ∑
𝑖≤ 𝑗 𝑤𝑖 . In the prefix sum cover

problem, we are given 𝑛 vectors 𝑢1, 𝑢2, ...𝑢𝑛 ∈ 𝑁𝑑+ , a target vector
𝑣 ∈ 𝑁𝑑 and an integer number 𝑘 , and we want to find 𝑘 vectors

𝑢𝑙1 , 𝑢𝑙2 , ..., 𝑢𝑙𝑘 such that

∑
𝑖≤𝑘 𝑢𝑙𝑖 ≺ 𝑣 .

Moreover, for the purposes of our reduction, we consider a re-

stricted version of the problem. Let 𝑊 be the maximum scalar

that appears in any of the vectors 𝑢1, ..., 𝑢𝑛 and 𝑣 . First, we require

that both 𝑑 and𝑊 be bounded by some polynomial of 𝑛. For a

vector 𝑤 ∈ 𝑁𝑑 , let [𝑤] 𝑗 be its 𝑗-th dimension value. Second, for

each 𝑖 ∈ [1, 𝑛], we require that [𝑢𝑖]1 ≥ [𝑢𝑖]2 ≥ ... ≥ [𝑢𝑖]𝑑 , and
[𝑣]1 ≥ [𝑣]2 ≥ ... ≥ [𝑣]𝑑 , i.e., all vectors are non-decreasing. We

show in our full paper that prefix sum cover is NP complete.

Reduction. Now we will reduce the prefix sum cover problem

to the active time problem. Let ({𝑢1, 𝑢2, . . . , 𝑢𝑛}, 𝑣, 𝑘) be the prefix
sum cover instance. Our nested active time instance is defined by a

set of jobs 𝐽 and it uses 𝑝 = 𝑑𝑊 machines. Our instance is made up

of three kinds of jobs:

• For each vector 𝑢𝑖 , and each𝑤 ∈ [2,𝑊], we have 𝑝 − |{ 𝑗 ∈
[1, 𝑑] | [𝑢𝑖] 𝑗 ≥ 𝑤}| rigid unit length jobs, each with window

consisting of a single slot [(𝑖 − 1)𝑊 +𝑤 − 1, (𝑖 − 1)𝑊 +𝑤].
• For each vector 𝑢𝑖 , we also have

∑
𝑗≤𝑑 [𝑢𝑖] 𝑗 − 𝑑 flexible unit

jobs with window [(𝑖 − 1)𝑊, 𝑖𝑊].
• Finally, we have jobs that depend on the target vector. For

each 𝑗 ∈ [1, 𝑑], we have a job with length [𝑣] 𝑗 and window

[0, 𝑛𝑊].
We denote each of these sets of job with 𝑆1 (rigid jobs), 𝑆2 (flexible

jobs associate with each 𝑢𝑖 vector), and 𝑆3 (jobs associated with the

target vector).

Let us try to schedule this instance, starting with 𝑆1. Since the

jobs in 𝑆1 are rigid, we must open all slots in [(𝑖 − 1)𝑊 + 1, 𝑖𝑊].
Notice that each of these slots has at least 𝑝−𝑑 jobs in 𝑆1, so each of

these time slots has at most 𝑑 unused machines after scheduling 𝑆1.

Next we will try to fit jobs from 𝑆2 into [(𝑖 − 1)𝑊, 𝑖𝑊]. Observe
that the total capacity in the window [(𝑖 − 1)𝑊 + 1, 𝑖𝑊] is 𝑝 (𝑊 − 1)
and that the jobs from 𝑆1 take up up

∑
𝑤∈[2,𝑊] (𝑝 − |{ 𝑗 ∈ [1, 𝑑] |

[𝑢𝑖] 𝑗 ≥ 𝑤}|) capacity. Further observe that∑︁
𝑤∈[2,𝑊]

(𝑝 − |{ 𝑗 ∈ [1, 𝑑] | [𝑢𝑖] 𝑗 ≥ 𝑤}|) +
∑︁
𝑗≤𝑑
[𝑢𝑖] 𝑗 −𝑑 = 𝑝 (𝑊 − 1) .

Therefore, if we do not open the slot [(𝑖 − 1)𝑊, (𝑖 − 1)𝑊 + 1], then
the jobs from 𝑆1 and 𝑆2 will use up all of the available capacity in

the time window [(𝑖 − 1)𝑊, 𝑖𝑊]. This is important, as it means that

we cannot schedule any job from 𝑆3 in this window.

We say that the time slots [(𝑖 − 1)𝑊, (𝑖 − 1)𝑊 + 1] for 𝑖 ∈ [𝑛]
are special. Since all non-special slots in [0, 𝑛𝑊] must be open, the

problem boils down to opening as few special slots as possible to

accommodate the jobs in 𝑆3.

Suppose we open the special time slot [(𝑖 − 1)𝑊, (𝑖 − 1)𝑊 + 1].
We claim that all jobs in 𝑆2 will be assigned to the special time

slot. Indeed, even after all 𝑆2 jobs are assigned to this slot, there

are still 𝑝 − (∑𝑗≤𝑑 [𝑢𝑖] 𝑗 − 𝑑) ≥ 𝑑 unused machines in it, while we

can only have at most 𝑑 unused machines in each time slots in

[(𝑖 − 1)𝑊 + 1, 𝑖𝑊] after scheduling 𝑆1.
A configuration is a sequence (𝑧1, 𝑧2, ..., 𝑧𝑀), where 𝑧𝑖 is the

number of unused machines at time [𝑖 − 1, 𝑖]. Thus, once we have
chosen which special slots to open, we get the configuration which

tells us how many machines are left unused in each time slot.

Number the machines from 1 to 𝑝 . For any given configuration,

we can assume without loss of generality that if we have 𝑧𝑡 unused

capacity at time slot [𝑡−1, 𝑡] thenmachines 1 through 𝑧𝑡 are unused;

i.e, we always leaves smaller index machine unused. Let 𝑒 𝑗 be the

number of empty time slots at machine 𝑗 . We give an if-and-only-if

condition for the feasibility based on the 𝑒 𝑗 values, whose proof is

left to the full version.

Lemma 3. Given a configuration, let 𝑒 𝑗 be the machine unused
slot defined above and 𝐽 ′ be a set of 𝑞 ≤ 𝑝 jobs with no release time
and due time constraint. Let 𝑙1 ≥ 𝑙2 ≥ ... ≥ 𝑙𝑞 be the lengths of
the jobs in 𝐽 . The configuration can fit all jobs in 𝐽 ′ if and only if∑
𝑖≤ 𝑗 𝑒𝑖 ≥

∑
𝑖≤ 𝑗 𝑙𝑖 for all 𝑗 ∈ [1, 𝑞].

Now we show how to apply it to the active time instance. We

will set 𝐽 = 𝑆3 and 𝑞 = 𝑑 . For any interval [(𝑖 − 1)𝑊, 𝑖𝑊], let
𝑒1,𝑖 , 𝑒2,𝑖 , ..., 𝑒𝑑,𝑖 be the unused time slot for machine 1 to 𝑑 in this

interval. If we close the special time slot [(𝑖 − 1)𝑊, (𝑖 − 1)𝑊 + 1],
then there is no capacity left so 𝑒1,𝑖 = 𝑒2,𝑖 = ... = 𝑒𝑑,𝑖 = 0. If we open

it, then 𝑒 𝑗,𝑖 = [𝑢𝑖] 𝑗 , i.e. the 𝑗-th machine will hold exactly [𝑢𝑖] 𝑗 un-
used time slots in the interval. Now the problem becomes we want

to open 𝑘 special time slots such that the resulting configuration can

fit all jobs from 𝑆3. Lemma 3 implies that it is equivalent to choos-

ing 𝑘 vectors from (𝑒1,1, . . . , 𝑒𝑑,1) = 𝑢1, ..., (𝑒1,𝑛, . . . , 𝑒𝑑,𝑛) = 𝑢𝑛 such

that

∑
𝑖≤ 𝑗 𝑒𝑖 ≥

∑
𝑖≤ 𝑗 [𝑣]𝑖 for every 𝑗 ∈ [1, 𝑑], which is exactly the

definition of our prefix sum cover problem.

ACKNOWLEDGEMENTS
This research was supported in part by NSF grants CCF-1918989

and CCF-2106759.

REFERENCES
[1] Jessica Chang, Harold N. Gabow, and Samir Khuller. A model for minimizing

active processor time. Algorithmica, 70(3):368–405, 2014.
[2] Jessica Chang, Samir Khuller, and Koyel Mukherjee. LP rounding and combinato-

rial algorithms for minimizing active and busy time. J. of Scheduling, 20(6):657–680,
2017.

[3] Saurabh Kumar and Samir Khuller. Brief announcement: A greedy 2 approximation

for the active time problem. In Proc. of the 30th on Symposium on Parallelism in
Algorithms and Architectures, page 347–349, 2018.

[4] Sagnik Saha and Manish Purohit. Np-completeness of the active time scheduling

problem. arXiv preprint arXiv:2112.03255, 2021.

Session 8: Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

383

	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Linear Program
	3.2 Transformation of LP Solution
	3.3 Rounding Algorithm to Obtain an Integral Vector {0, 1}[m]

	4 NP-COMPLETENESS
	References

