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Abstract

This paper presents a randomized parallel single-source shortest paths (SSSP) algorithm for directed graphs
with non-negative integer edge weights that solves the problem exactly in Õ(m) work and n1/2+o(1) span, with
high probability. All previous exact SSSP algorithms with nearly linear work have linear span, even for
undirected unweighted graphs. Our main technical contribution is to show a reduction from the exact SSSP
to directed hopsets [6] using the iterative gradual rounding technique [9]. An (h, ϵ)-hopset is a set of weighted
edges (sometimes called shortcuts) that when added to the graph admit h-hop paths with weights no more
than (1 + ϵ) times the true shortest path distances.

Furthermore, we show how to combine this algorithm with Forster and Nanongkai’s framework [15] to
improve the distributed exact SSSP algorithm. Specifically, we obtain an Õ(

√
n +D + n2/5+o(1)D2/5)-round

algorithm in the CONGEST model for exact SSSP in directed graphs with non-negative integer edge weights,
where D is the unweighted diameter of the underlying undirected graph.

1 Introduction

The shortest-path problem is one of the most fundamental problems in combinatorial optimization. Given a
weighted directed graph G = (V,E,w) with non-negative integer edge weights, the single-source shortest-path
problem is to find minimum-weight paths from a designated s ∈ S to all other nodes. In the sequential setting,
the classic solution has running time O(m+ n log n) [16], where n = |V | and m = |E| are the number of vertices
and edges in the graph, respectively. In the parallel setting, the existing algorithms are far from attaining the
efficiency we would like. Given that the sequential solution has nearly linear runtime, an ideal parallel algorithm
would run in Õ(m/p) parallel time on p processors (for reasonably large p), where the Õ notation suppresses
logarithmic factors. In order to achieve such a bound, a parallel algorithm must have nearly linear work and
strongly sublinear span; the work of a parallel algorithm is the total number of primitive operations, and its
span or depth is the length of the longest chain of sequential dependencies or, equivalently, the limit of parallel
time as p approaches infinity.

Although dozens of papers [3, 4, 12, 19, 22, 27, 28] have been published on the exact version of the shortest-
path problem, there is no ideal parallel solution, especially when the graph is sparse. Even for the simplest
case of an unweighted, undirected graph, all algorithms to date either have linear span, meaning that they are
inherently sequential, or they only manage to reduce the span at the cost of significantly increasing the work. For
example, when tuned to achieve the span of Õ(

√
n), Spencer’s algorithm [27] has work Õ(m + n2). Klein and

Subramanian’s algorithm [20] has work Õ(m
√
n). Table 1 summarizes the prior art on parallel SSSP algorithms

for directed graphs along with our new result.
In light of the difficulty of producing efficient parallel algorithms that produce exact solutions to the single-

source shortest-paths problem, much of the progress on parallel algorithms for shortest paths has come in the
form of approximate solutions. The approximate SSSP problem is a relaxed version of the problem, where
instead of outputting the exact distances dist(s, v) from s to every vertex v, the algorithm instead may output
an approximate distance dv satisfying dist(s, v) ≤ dv ≤ (1 + ϵ)dist(s, v). For undirected graphs, the approximate
SSSP problem has been widely studied [1, 10, 13, 14, 21, 23]. Recent breakthroughs indicate that it is possible
to simultaneously achieve Õ(m) work and O(poly(log n)) span [1, 21, 26] for approximate SSSP on undirected
graphs. Nevertheless, the exact version of the problem remains difficult even for the undirected case.
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Paper work span edge weight approximation

Parallel Dijkstra’s[16] Õ(m) O(n) non-negative real exact

Klein and Subramanian[20] Õ(m
√
n) O(

√
n) non-negative integer exact

Spencer’s algorithm [27] Õ(m+ nρ2) O(nρ ) non-negative real exact

Cao, Fineman and Russell [6, 7] Õ(mρ2 + nρ4) n1/2+o(1)

ρ non-negative real approximate

Our result Õ(m) n1/2+o(1) non-negative integer exact

Table 1: SSSP algorithms for directed graphs in the work/span parallel model. To state the bounds more
concisely, it is assumed here that the edge weights are bounded by a polynomial in n. The variable ρ is used to
denote a parameter. Spencer’s algorithm requires ρ ∈ [1, n], and for Cao, Fineman, and Russell’s algorithm,
ρ ∈ [1, n1/2+o(1)]. Omitted from the table, Forster and Nanongkai [15] extended Klein and Subramanian’s
algorithm; their extension also achieves a work/span tradeoff.

For directed graphs, Cao, Fineman, and Russell [6] give the first algorithm with both nearly linear work and
sublinear span for approximate SSSP problem on directed graphs, which can also be generalized to achieve a
work-span tradeoff [7].

For the exact SSSP in the CONGEST model [24], Ghaffari and Li [18] presented two randomized algorithms
for directed graphs with polynomially bounded integer edge weights that run in Õ(D1/4n3/4) rounds and
Õ(n3/4+o(1) + min{n3/4D1/6, n6/7} + D) rounds. At the same time, Forster and Nanongkai [15] provided two
randomized algorithms for graphs with polynomially bounded integer edge weights that run in Õ(

√
nD) rounds

and Õ(n1/2D1/4 + n3/5 + D) rounds. Chechik and Mukhtar [9] recently showed a randomized algorithm that
achieves Õ(

√
nD1/4 +D) rounds.

Hopsets. One of the main tools for approximate shortest paths is a combinatorial structure called a hopset;
this paper leverages hopsets to produce exact distances. An (h, ϵ)-hopset H is a set of weighted edges that,
when added to the original graph, approximates the shortest-path distances by paths of at most h hops, where
h is called the hopbound. Formally, given a graph G = (V,E,w), H is an (h, ϵ)-hopset if and only if (1)
for all edges (u, v) ∈ H, the weight w(u, v) of the edge is not less than the shortest path distance in G, i.e.,
w(u, v) ≥ distG(u, v), and (2) for every u, v ∈ V there exists a path p from u to v in G′ comprising at most h
hops such that w(p) ≤ (1 + ϵ)distG(u, v), where G′ = (V,E ∪H,w) is the graph with the hopset edges included.
Although hopsets were first formalized by Cohen [10], many earlier parallel algorithms for shortest paths used
hopsets or analogous combinatorial structures implicitly.

We say that a graph is an (h, ϵ)-hopset graph if for any pair of nodes u, v, dist(u, v) ≤ dist (h)(u, v) ≤
(1 + ϵ)dist(u, v), where dist(u, v) is the shortest path distance and dist (h)(u, v) is the shortest path distance
containing at most h edges. A hopset graph may be obtained by taking the union of the input graph and a hopset
for that graph.

There is a straightforward sequential algorithm that constructs an (
√
n, 0)-hopset with hopbound β = Õ(

√
n)

and size O(n). The algorithm randomly samples Θ̃(
√
n) vertices, and the hopset contains all edges between

each pair of sampled vertices, where the edge weights are the shortest-path distances. This algorithm actually
produces an exact hopset (i.e., ϵ = 0), but the algorithm has high running time as it entails running Θ̃(

√
n)

SSSP computations. Ullman and Yannakakis [28] parallelize this algorithm for the unweighted case; Klein and
Subramanian [20] extend that algorithm to the integer-weighted case, but they also increase ϵ in the process
and thus no longer obtain an exact hopset. In addition, Klein and Subramanian [20] show that their hopset can
also be used to solve the exact SSSP algorithm by running Õ(

√
n) rounds of the Bellman-Ford algorithm and

applying a scaling technique. More recently, Cao, Fineman, and Russell [6] give a method for constructing a
(n1/2+o(1), ϵ)-hopset in Õ(m) work and n1/2+o(1) span. Unsurprisingly, the problem of constructing hopsets has
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a significantly lower complexity when the graph is undirected; there are low-work algorithms [10, 13, 14, 23] that
construct hopsets with small or even constant hopbound for undirected graphs. The algorithms for producing
hopsets are generally randomized, and the quality of the hopset that is returned is probabilistic.

1.1 Our results. Our results leverage recent breakthroughs on directed hopsets [6], an integer scaling
technique [20], and a simple but powerful rounding technique called iterative gradual rounding [9].

Klein and Subramanian [20] provide a parallel algorithm with Õ(m
√
n) work that produces a “distance

estimate,” and they show how to use a distance estimate satisfying certain properties to solve the exact SSSP
problem. In particular, their distance estimate is an integer d̃(v) for each node v ∈ V such that: (a) for each
v ∈ V , dist(v)/2 ≤ d̃(v) ≤ dist(v), (b) for each (u, v) ∈ E, d̃(u) +w(u, v) ≥ d̃(v). With such an estimate in hand,
each edge (u, v) can be reweighted by setting w̃(u, v) = d̃(u)− d̃(v) + w(u, v). The first property of the estimate
provides a progress guarantee as the maximum shortest-path distance decreases by at least half after reweighting;
the second property, called the triangle inequality, ensures that edge weights remain nonnegative. They show that
computing O(logW ) distance estimates is sufficient to solve the exact SSSP on graphs with nonnegative integer
weights, where W denotes the maximum weight.

In more recent work, Chechik and Mukhtar [9] show how to compute a distance estimate in the CONGEST
model, with a relaxed version of the triangle inequality, and in turn how to solve exact SSSP. Building off their
iterative gradual rounding technique, we obtain a parallel algorithm for computing a distance estimate in a hopset
graph. Our main result is as follows.

Theorem 1.1. Given an (h, ϵ = 1
4 log(2nK) )-hopset graph G with non-negative integer edge weights from

{0, 1, 2, ...K}, there is a deterministic parallel algorithm with Õ(m logK) work and Õ(h log2 K) span that computes
a distance estimate of the graph.

This result forms the basis for our improved parallel SSSP algorithms. Cao, Fineman, and Russell [6] give an
efficient construction for (h = n1/2+o(1), ϵ)-hopset. Using that result, we are able to solve the parallel exact SSSP
algorithm efficiently. In particular, adding a hopset to the input graph produces a hopset graph on which we can
find a distance estimate. Our distance estimate has a slightly different form from Klein and Subramanian’s[20],
but we can tranform our estimate to match theirs through a simple transformation (see Section 3) and thus use
their scaling technique. We thus obtain the following theorem.

Theorem 1.2. There is a randomized parallel algorithm that, given an n-node m-edge directed graph with non-
negative integer edge weights from {0, 1, 2, ...,W}, solves the exact single-source shortest path problem with
Õ(m logW ) work and n1/2+o(1) logW span, with high probability.

We can also transform the algorithm from Theorem 1.1 to the distributed model. Our main result for
distributed SSSP algorithms is given by Theorem 1.3. Notice that there is a known lower bound of Ω(

√
n+D) [24],

and our algorithm matches the lower bound when D = o(n1/4).

Theorem 1.3. There is a distributed randomized algorithm that, given an m-edge n-node directed graph with
non-negative integer edge weights from {0, 1, 2, ...,W}, solves the exact single source shortest path problem with
O((n2/5+o(1)D2/5+

√
n+D) logW ) rounds of communication in the CONGEST model with high probability, where

D is the hop diameter of the undirected communication network.

Concurrent results [25]. At around the same time as we completed this work, Rozhoň et al. [25] concurrently
obtained similar and more general results. Their work [26] provides several more refined notions of shortest-path
approximations, and they show various reductions between the different approximations and exact solutions. In
particular, they show how to use an algorithm for approximate SSSP on directed graphs with integer edge weights
to solve exact SSSP. Notably, their results also imply a solution to exact shortest paths in the PRAM model in
Õ(m logW ) work and n1/2+o(1) logW span. Their reduction is more general than ours in the sense that their
reduction applies to any approximate SSSP solution, whereas ours relies specifically on hopsets. (All directed-
graph approximations for SSSP currently use hopsets, but this may change in the future; indeed, for undirected
graphs, some of the newest algorithms do not build hopsets [1, 21, 26].)
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1.2 Overview of the technique. Here we provide an overview of our approach and why it works. Throughout
this section, we refer to the input directed graph G = (V,E,w) and a source node s.

As a minor deviation from Klein and Subramanian [20], we use overestimates instead of underestimates.

That is, our goal is to produce a distance estimate d̂(v) for each node v ∈ V , such that (a) for each v ∈ V ,

dist(v) ≤ d̂(v) ≤ 2dist(v), (b) for each (u, v) ∈ E, d̂(u) + 2w(u, v) ≥ d̂(v). The overestimate can be used to
construct their form of underestimate, and the overestimate is more familiar in the context of the approximate
shortest paths. In light of prior work on approximate single-source shortest paths, it is not hard to satisfy the first
inequality; in fact, any solution to approximate SSSP satisfies inequality (a). The main challenge is to produce a
distance estimate that also satisfies the relaxed triangle inequality (b).

Main technique. To convey the main idea of building a distance estimate with the relaxed triangle
inequality, consider a graph G = (V,E,w) containing only positive integer edge weights. The algorithm
maintains a distance estimate d′(u) ≥ dist(u) for each vertex. Initially, d′(s) = 0 and d′(u) = +∞ for all
other vertices. The algorithm then iteratively improves the estimates. To do so, we find it convenient to reason
about weights of paths rather than single edge, and thus our update rule can be viewed as a generalization of
“edge relaxations.” Specifically, the algorithm iteratively produces a new estimate d̂ using a generic rule of the
form d̂(v) = minu∈V,u⇝v(d

′(u) + w(u ⇝ v)) for each node v, where u ⇝ v is an arbitrary path. Note that this
formula generalizes edge relaxations, and hence, when a fixed point has been reached and no further updates are
possible, d̂(v) satisfies both properties of a distance estimate.

It should not yet be clear, however, how to apply this update rule directly. Indeed, finding the minimum
over all paths is equivalent to finding the shortest path to v. Instead, we relax the problem by rounding-up the
edge weights in the graph. The algorithm proceeds in rounds numbered from log(nK) down to 1, where K is
the maximum integer edge weight. In each round i, we round-up the edge weights w(e) to wi(e) and apply the

update rule d̂(v) = minu∈V,paths u⇝ v(d
′(u) +wi(u⇝ v)). We shall address what weights to use next, but before

doing so let us consider a sufficient ending condition. As long as in the last round, d′(u) ≥ dist(u) for each node

u ∈ V and w1(e) ∈ [w(e), 2w(e)], our final d̂(u) will satisfy both properties of the distance estimate.

By carefully designing how to round edges, we can make it so that updating the current round estimate d̂
given the previous round estimate d′ can be done efficiently in parallel. Our rounding method basically follows
the iterative gradual rounding method [9]. Here, we give a more natural formula to show the high-level idea. Our
weights are parameterized by a value h = Ω(1), which shall be set according to the hopbound of the hopset graph.
This value remains unchanged across the execution of the algorithm. Let N = nK be the maximum path weight.
Specifically, in round i (where i goes from logN down to 1), we use roughly the following weights for each e ∈ E:

wi(e) = w(e) + Θ

(
2i

h logN

)
+

(
logN − i

logN

)
w(e)

The last round is i = 1. During round 1, for any h = Ω(1), we have w(e) ≤ wi(e) ≤ 2w(e), and hence the distance
estimate can be used to compute the SSSP.

The first term Θ( 2i

h logN ) gives us a good lower bound for each edge. Given this lower bound, one can perform

a natural extension of parallel breadth-first search to compute the distance wi(u ⇝ v), and this algorithm is
efficient as long as the number of hops on the path is small. That is, we need only argue that shortest-path
updates with respect to d′ and wi have at most O(2i) hops. Specifically, the main claim we prove is that when
wi(u⇝ v) > Ω(2i), the estimate achieved in round (i+1) is already better than any potential update performed
in the next round i. (Recall that we are numbering rounds in decreasing order.) Thus, only short paths need be
considered, and these paths cannot have too many hops given the lower bound on edge weights.

Completing the proof that only short paths need be considered leverages the (logN − i)w(e)/ logN term in
the wi(e) expression coupled with the fact that we are operating on a hopset graph. In particular, this term
increases in each subsequent round as i is decreasing. When a particular path is long, the weight of the path
contributed by this last term thus increases significantly when moving from one round to the next. In contrast,
the Θ(2i/(h logN)) term charges the path proportionally to the number of hops. Because the graph is a hopset
graph, and hence almost-shortest paths with few hops exist, we are able to argue that for long paths the increase
to the (logN − i)w(e) term dominates any possible decrease in the Θ(2i/(h logN)) term.

Why doesn’t the same technique produce better bounds for undirected graphs? There are more
efficient constructions of hopsets for undirected graphs, so it is natural to question if the same approach yields
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better results for undirected graphs. Unfortunately, it does not. While we could indeed apply an undirected hopset
to produce the first distance estimate, the issue is that the algorithm performs multiple iterations, reweighting
the graph further on each iteration. The reweighting process eliminates the symmetry on edge weights, and
thus undirected graphs effectively become directed. Therefore, after the first iteration, each subsequent distance
estimate must be produced using a directed hopset instead of an undirected one.

Differences from Chechik and Mukhtar[9]. Our algorithm follows the general blueprint of Chechik and
Mukhtar[9], but we highlight the following differences:

• Limited distance search vs. unlimited search. Although in the implementation, both our algorithm and
Chechik and Mukhtar’s algorithm update distances with distance-limited searches in the graph, Chechik
and Mukhtar consider limited distance as a starting point. While distance-limited searches seem necessary
to limit the number of rounds in the algorithm (i.e., the span), starting from distance-limited searches makes
it difficult to realize the triangle inequality because the limited distance search might destroy the inequality
for an edge. Chechik and Mukhtar show a different form of the triangle inequality than we do; theirs is
distance limited, which makes it more complicated. We instead analyze the algorithm with respect to an
unbounded search, and then we prove that the distance-limited searches produce the same result. This leads
to a significantly shorter and simpler proof.

• Using hopsets as a black-box. Our algorithm and analysis explicitly leverage hopsets, and we use the hopset
construction as a black box. This not only reduces the complexity of the algorithm and the proof, but
also means that our algorithm immediately improves when a better hopset algorithm becomes available.
In contrast, Chechik and Mukhtar’s algorithm implicitly constructs a specific hopset, namely roughly the
Klein and Subramanian’s hopset [19], and their analysis only holds for the specific construction. Moreover,
that hopset construction has high work, and it is thus not suitable for a low-work parallel algorithm.

2 Definitions and Preliminaries

A directed weighted graph G is a triple (V,E,w) where w : E → Z is a weight function. We use n = |V (G)|
and m = |E(G)| to denote the number of vertices and edges, respectively. For each e ∈ E, we denote the weight
by w(e). If e ̸∈ E, then w(e) = +∞. This paper addresses the shortest-path problem when edge weights are
nonnegative integers, i.e., all edge weights are from {0, 1, 2, . . . ,W}, where W denotes the maximum edge weight.

A path is a sequence of vertices joined by edges; sometimes we refer to the path by the sequence of vertices
and sometimes by the edges, depending on what is more convenient. We sometimes use u⇝ v to indicate a path
from u to v. Given a graph G = (V,E,w) and path p = v0 → v1 → · · · → vk, we define the weight of the path

as w(p) =
∑k

i=1 w(vi−1, vi), i.e., the sum of the weights of all edges on the path. We use |p| = k to denote the
number of edges, also called hops, along the path.

For a pair of nodes u, v ∈ V , the shortest-path distance from u to v is the minimum weight over all paths
from u to v. We use distw(u, v) to denote the shortest-path distance from u to v with respect to the weight
function w. When the weight function w is clear in the context, we simply write dist(u, v). If there is no u-to-v

path, then we define dist(u, v) =∞. Furthermore, dist (h)(u, v) denotes the minimum weight over all u-to-v paths
that contain at most h edges. When referring to distances from a designated source vertex s, we use dist(v) and

dist (h)(v) as shorthands for dist(s, v) and dist (h)(s, v), respectively.
For a subset V ′ ⊂ V , we use G(V ′) to denote the vertex-induced subgraph, and we use E(V ′) to denote the

edges in the induced subgraph. We sometimes refer to lists of edges that may or may not exist in these subgraphs.
For a candidate path p, we say p ∈ E if all edges in p are indeed in E, and p ̸∈ E otherwise.

We say that a node u is an ancestor of v, and conversely, v is a descendant of u, if there is a directed path
from u to v in G. Every node is an ancestor and the descendant of itself. We use Anc(G, v) and Des(G, v) to
denote the set of all nodes that are ancestors or descendants, respectively, of v. When G is clear, we use Anc(v)
and Des(v) as abbreviations.

We say that a function g(n) = Õ(f(n)) if there exists a constant k such that g(n) = O(f(n) logk f(n)).
Similarly, we use g(n) = Ω̃(f(n)) to mean that there exists a constant k such that g(n) = Ω(f(n) logk f(n)). We
also use g(n) = Θ̃(f(n)) to mean g(n) = Õ(f(n)) and g(n) = Ω̃(f(n)).

When we say that an algorithm achieves some performance O(f(n)) with high probability, we mean the
following: for any particular choice of constant c > 0, the algorithm achieves performance O(f(n)) with probability
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at least 1− 1/nc. The constant inside the big-O may depend on the constant c.

3 The High-Level Algorithm

Our exact SSSP algorithm is an efficient realization of a general algorithm outlined in this section. This section
presents the algorithm at a high level and does not consider any of the implementation details. Instead, we focus
here on key properties provided by each step of the algorithm. We first confirm, by simple transformation to [20],
that producing distance overestimates with the triangle inequality O(logW ) times is sufficient to solve the exact
SSSP problem. We next give a high-level algorithm for finding a distance estimate. In more detail, the algorithm
uses iterative gradual rounding [9]; in each round, the algorithm improves distance estimate di+1 computed in
round (i + 1) to distance estimate di, where di(v) ≤ di+1(v). Finally (Section 3.3), we show that each iteration
of this process has a key feature: if the graph is a hopset graph, di can be built from di+1 without considering
paths that are very long, and in particular the paths do not comprise many hops. We thus reduce the problem of
producing a valid distance estimate to (1) finding a hopset, and (2) solving a particular hop-limited shortest-path
problem. Section 4 explains how to solve this latter problem by using a generalized breadth-first search.

Given the reduction outlined above, solving exact SSSP for digraphs with edge weights from {0, 1, ...,W}
entails O(logW ) applications of finding a hopset [5, 8] and modified breadth-first search (Section 4). The
complexity of the algorithm thus depends on the efficiency of the realizations of modified breadth-first search
in parallel and distributed models, which is discussed in Section 5.

3.1 Reducing exact SSSP to computing a distance estimate. Given a directed graph G = (V,E,w)

with non-negative integer weights from {0, 1, 2, ....,K} and a source node s, a distance estimate d̂ : V → R is
a function from vertices to real numbers (in our case, rational numbers) such that

(1) for all v ∈ V , dist(v) ≤ d̂(v) ≤ 2dist(v),

(2) for all (u, v) ∈ E, d̂(v) ≤ d̂(u) + 2w(u, v)

Given a slightly different type of distance estimate, Klein and Subramanian [20] show how to solve exact SSSP
by computing distance estimates and reweighting the graph O(logW ) times, where W is the maximum weight in

the original graph. To obtain a distance estimate d̃ that matches their form, we simply set d̃(v) =
⌈
d̂(v)/2

⌉
. It is

not hard to verify that when all weights are integers: (1) for all v ∈ V , we have dist(v)/2 ≤ d̃(v) ≤ dist(v), and
(2) for all edges (u, v) ∈ E, we have d̃(v) ≤ d̃(u) + w(u, v). This is the form of distance estimate they use, so we
can apply the same reduction.

We note that in the original graph, the maximum edge weight is W , which may not be polynomial in the size
of the graph. However, when computing each distance estimate, it suffices to consider weights that are at most
K = O(n) (see Lemma 4.1 in Klein and Subramanian [20] or Theorem 2.1 in Forster and Nanongkai [15]). This
means that the only way the maximum weight W affects the complexity of the algorithm is with respect to the
number of iterations of scaling, i.e., the number of times to find a distance estimate.

3.2 Producing a distance estimate via iterative rounding. This section gives our high-level algorithm
for producing a distance estimate, shown as pseudocode in Algorithm 1. The algorithm takes as input a weighted
hopset graph G = (V,E,w), where all weights are from {0, 1, . . . ,K}, and a source s ∈ V . We assume throughout

that G is an (h, ϵ)-hopset graph. That is, for any pair of nodes u, v, dist(u, v) ≤ dist (h)(u, v) ≤ (1 + ϵ)dist(u, v),
where ϵ is a sufficiently small value to be determined later.

Algorithm 1 proceeds in β + 1 = ⌊lg(nK)⌋ + 2 rounds, numbered in decreasing order, where the last round
(lines 8-11) is designed for 0-weight edges. Initially, the distance estimate for all nodes except the source node
s is set to nK, which is larger than the maximum possible shortest-path distance (which is at most (n − 1)K).
In each round i, we round-up edge weights according to the formula shown in Line 5, which we shall discuss
more in the next. We then update di(v) from di+1(u). In particular, for the node u that minimizes the following
expression, the update is di(v) ← di+1(u) + wi(u ⇝ v). That is, di(v) is set to the the distance to u in the
previous round, plus the weight of the shortest path from u to v with respect to round-i weights wi. How
to perform these updates efficiently is the topic of Sections 4 and 5. The final round (lines 8-11), which we
number as round 0, considers only the zero-weight edges in the graph. Here, distances are simply propagated
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Algorithm 1 Producing a distance estimate with the triangle inequality
Input: An (h, ϵ)-hopset graph G = (V,E), with edge weights wG : E → {0, 1, ...,K} and a source node s ∈ V

Output: A distance estimate d̂

1: δ ← ln( 32 ), β ← ⌊lg(nK)⌋+ 1
2: for v ∈ V dβ+1(v)← nK

3: dβ+1(s)← 0
4: for i← β downto 1

5: for e ∈ E wi(e)← 2i

16·h·β + (1 + δ/β)β−i · w(e)
6: for v ∈ V
7: di(v)← minu∈V,u⇝v∈E(di+1(u) + wi(u⇝ v))

8: for e ∈ E
9: if w(e) = 0 then w0(e)← 0

10: else w0(e)← +∞
11: for v ∈ V d̂(v)← minu∈V,u⇝v∈E(d1(u) + w0(u⇝ v))

across zero-weight edges. That is to say, the final distance estimate d̂ = d0 is computed in this round by setting
d̂(v) ≥ min {d1(u)|u⇝ v by 0-weight edges}.

The specific weights used for wi are wi(e) =
2i

16hβ + α(i) · w(e), where we define α(i) = (1 + ln(3/2)/β)β−i.

Notice that since round numbers decrease, the first term 2i/(16hβ) decreases as the algorithm progresses. In
contrast, the second term is roughly 1 + (β − i)Θ(1/β), which increases as the algorithm progresses.

Before proving that this algorithm yields a distance estimate, we first clarify some properties of the algorithm.

Lemma 3.1. The following properties hold:

(3.1a) For any node v ∈ V and i ∈ [0, β], di+1(v) ≥ di(v);

(3.1b) For any path u⇝ v and i ∈ [0, β], di(v) ≤ di(u) + wi(u⇝ v);

(3.1c) For any i ∈ [0, β], α(i+ 1) < (1 + δ/β) · α(i+ 1) = α(i) and α(0) ≤ 3
2 .

Proof. The first part of (3.1c) is trivial. The second (that α(0) ≤ 3/2) follows because (1+ ln(3/2)/x)x ≤ 3/2 for
all x > 0. (3.1a) follows from the fact that the update rule results in di(v) ≤ di+1(v) +wi(v ⇝ v) = di+1(v). For
(3.1b), consider a node x such that di(u) = di+1(x) + wi(x ⇝ u). Then we have di(v) ≤ di+1(x) + wi(x ⇝ u ⇝
v) ≤ di(u) + wi(u⇝ v).

Now, we show that the computed distance estimate satisfies the first constraint of distance estimates.

Lemma 3.2. Suppose ϵ ≤ δ/β. Then for every v ∈ V , we have dist(v) ≤ d̂(v) ≤ 2dist(v)

Proof. First, we show d̂(v) ≥ dist(v). Because all weights wi are at least the original weight, for every path p we
have wi(p) ≥ w(p). It is thus easy to show by induction that di(v) is at least the weight of the shortest path from
s to v with respect to w.

Next, we want to show d̂(v) ≤ 2dist(v). There are two cases. First, consider the case that dist(v) = 0. Then
there is a path s⇝ v that contains only zero-weight edges. Considering lines 8–11, every zero-weight path s⇝ v
is preserved with respect to w0 and hence d̂(v) = d1(s) + w0(s⇝ v) = 0.

The second case is that dist(v) ≥ 1. Note G is an (h, ϵ) hopset graph, so there exists a path p from s to v such

that p contains at most h hops and w(p) ≤ (1 + ϵ)dist(v). From (3.1b), we have d̂(v) ≤ d1(v) ≤ d1(s) + w1(p) ≤
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w1(p). We only need to bound w1(p):

w1(p) =
∑
e∈p

(2/(16hβ)) + α(1)w(e))

=
∑
e∈p

(2/(16hβ)) + α(1)
∑
e∈p

w(e)

< 1/8 + α(1) · w(p) (by |p| ≤ h and β ≥ 1)

≤ (1/8)dist(v) + α(1) · (1 + ϵ) · dist(v) (by assumptions dist(v) ≥ 1 and p is 1 + ϵ approximate)

≤ (1/8)dist(v) + α(0) · dist(v) (if 1 + ϵ ≤ 1 + δ/β)

≤ 2dist(v) (α(0) ≤ 3/2 by (3.1a))

Next, we show that the second constraint of being a distance estimate is also satisfied.

Lemma 3.3. Suppose ϵ ≤ δ/β. Then for every (u, v) ∈ E, d̂(v) ≤ d̂(u) + 2 · w(u, v).

Proof. If w(u, v) = 0, then from (3.1b), we have d̂(v) = d0(v) ≤ d0(u) + w0(u, v) = d̂(u) + w(u, v).

Otherwise w(u, v) ≥ 1, consider the node y such that d̂(u) = d1(y). (It may be the case that y = u). Let pu
be a y ⇝ u path containing only zero-weight edges, and let pv be the same path but with (u, v) appended. Then
w(pv) = w(u, v). Because the graph is a hopset graph, there must be a path p from y to v containing at most h
hops with w(p) ≤ (1 + ϵ) ·w(pv) = (1 + ϵ)w(u, v). Applying the same algebraic steps as Lemma 3.2, we conclude

that w1(p) ≤ 2w(u, v). It follows from (3.1b) that d1(v) ≤ d1(y) + w1(p) ≤ d1(y) + 2w(u, v) = d̂(u) + 2w(u, v).

Finally, d0(v) ≤ d1(v) from (3.1a), so we have d̂(v) ≤ d1(v) ≤ d̂(u) + 2w(u, v) as desired.

Theorem 3.1. Algorithm 1 computes distance estimate satisfying (1) and (2).

Proof. The theorem is implied by Lemma 3.2 and Lemma 3.3.

3.3 Key properties of distance updates. Thus far, we have not discussed how to efficiently update di from
di+1. Here we focus on showing that Algorithm 1 has two key properties.

First, we show that all distance updates can be performed by only considering paths that are not too long.
That is to say, there is a relatively short path p : u ⇝ v for which di(v) = di+1(u) + wi(p). By short here, we
mean both that it does not have too many hops, and that the total weight is not too high. Because wi provides a
lower bound on all edge weights, this property suggests that it may be possible to realize the distance updates by
modifying breadth-first search (BFS). As such, parallel and distributed algorithms should be possible. Though it
turns out that this property alone is not sufficient.

Second, we show that the distance estimates do not decrease too quickly going from one iteration to the next.
That is, if di(v) = di+1(u) + wi(u ⇝ v), then it must be the case that di+1(u) is not too much smaller than
di+1(v). This property is also necessary to obtain an efficient parallel or distributed realization, but the reason is
a bit more subtle. Roughly speaking, our modified BFS algorithm (Section 4) needs to operate at multiple offsets,
i.e., from vertices at a wide range of distances, simultaneously. We cannot afford to include the entire graph in
every BFS. But because distances do not decrease by too much, each vertex need only be added to a constant
number of concurrent BFS executions.

Property 1: update paths are short. Consider a round i with i > 0. Based on the formula for rounding up
edge weights, we know that each edge weight is lower bounded by Ω(2i/(hβ)). The following lemma states that
if u ⇝ v can be used to improve the distance to vertex v, then wi(u ⇝ v) is upper bounded by O(2i). Coupled
with the lower bound on edge weights, this lemma directly implies that the number of hops on the path u⇝ v is
at most O(hβ).

Lemma 3.4. Suppose that ϵ ≤ 1/(4β). For any node u, v ∈ V , path p = u ⇝ v and i ∈ [1, β], if
di(v) = di+1(u) + wi(p), then w(p) < 2i and wi(p) < 2i+1.
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Proof. First, we show that w(p) < 2i. For i = β, we trivially have w(p) ≤ nK = 2β , as K is the maximum
edge weight. When i ∈ [1, β), according to the hopset assumption, there is a path p′ from u to v that
contains at most h hops and w(p′) ≤ (1 + ϵ)dist(u, v) ≤ (1 + ϵ) · w(p). Based on (3.1a) and (3.1b), we
have di(v) ≤ di+1(v) ≤ di+1(u) + wi+1(p

′). Combining with the assumption di(v) = di+1(u) + wi(p), we
have wi(p) ≤ wi+1(p

′). Now we give a lower bound for wi(p) and an upper bound for wi+1(p
′). We have

wi(p) ≥ α(i)w(p) for the lower bound. For the upper bound,

wi+1(p
′) ≤ 2i+1

16 · h · β
h+ α(i+ 1)w(p′) ≤ 2i

8β
+ α(i+ 1)(1 + ϵ)w(p)

So combining the upper and lower bounds, we have

wi(p) ≤ wi+1(p
′)⇒ α(i)w(p) ≤ 2i

8β
+ α(i+ 1)(1 + ϵ)w(p)

⇒ α(i+ 1)w(p) [(1 + δ/β)− (1 + ϵ)] ≤ 2i

8β

⇒ α(i+ 1)w(p)(δ/β − ϵ) ≤ 2i

8β

⇒ 8α(i+ 1)w(p)(δ − βϵ) ≤ 2i

⇒ w(p) < 2i if 8α(i+ 1)(δ − βϵ) > 1

Using α(i + 1) ≥ 1, one can inspect that the condition holds as long as βϵ < ln(3/2) − 1/8, which is true if
ϵ < 1/(4β).

We now have the bound on w(p). Since the di(v) = di+1(u) + wi(p), we also have

wi(p) ≤ wi(p
′) ≤ 2i

16 · h · β
· h+ α(i) · (1 + ϵ) · w(p) ≤ 2i/16 + (3/2)w(p) < 2i+1 ,

where the second-to-last step applies α(i)(1+ ϵ) ≤ α(0) ≤ 3/2 from (3.1c) and the last step uses the upper bound
on w(p).

Corollary 3.1. Suppose that ϵ ≤ 1/(4β). For any nodes u, v ∈ V , path p = u ⇝ v and i, and i ∈ [1, β], if
di(v) = di+1(u) + wi(p), then |p| = O(hβ).

Proof. For every edge, wi(e) ≥ 2i/(16hβ). We have wi(p) < 2i+1 from Lemma 3.4. Thus, |p| ≤
2i+1/(2i/(16hβ)) = 32hβ.

Property 2: distances do not decrease too rapidly. Here we focus on showing that di(v) is not very different
from di+1(v). Specifically, the distance to v can only decrease by O(2i) when going from round i+ 1 to round i.
Thus, our modified BFS (Section 4) can group vertices by distance di+1 in order to compute di.

Lemma 3.5. Suppose ϵ ≤ 1/(4β) and consider any nodes u, v ∈ V , i ∈ [1, β), and path p = u ⇝ v. If
di(v) = di+1(u) + wi(p), then di+1(v) ∈ [di+1(u), di+1(u) + 2i+1). Furthermore, for every node x on this path p,
we also have di+1(x) ∈ [di+1(u), di+1(u) + 2i+1).

Proof. Based on (3.1a), we have di+1(v) ≥ di(v) ≥ di+1(u), where the rightmost inequality comes from the
assumption on di(v) in the lemma statement. This gives us the claimed lower bound on di+1(v); we next turn to
the upper bound. By Lemma 3.4, we know w(p) < 2i. Since the graph is an (h, ϵ)-hopset graph, there is a path
p′ from u to v that contains at most h hops and with w(p′) ≤ (1 + ϵ) · w(p) < (1 + ϵ) · 2i. Based on (3.1b), we
know that di+1(v) ≤ di+1(u) + wi+1(p

′). We only need to bound wi+1(p
′):

wi+1(p
′) ≤ 2i+1

16 · h · β
· h+ α(i+ 1) · (1 + ϵ) · 2i < (1/8)2i + (3/2)2i < 2i+1
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Algorithm 2 Distance estimate updates on an induced subgraphs with nonzero weights
Input: Graph G(Aj) = (Aj , E(Aj), wi), for any v ∈ Aj , di+1(v) ∈ [(j − 1) · 2i+1, (j + 1) · 2i+1).
Output: For all v ∈ Aj , a distance di(v) = minu∈Aj ,u⇝v∈E(Aj)di+1(u) + wi(u⇝ v)

1: function UpdateInducedGraphs(G(Aj) = (V,E,wi), di+1)

2: ∆ = 2i

16·h·β
3: for k ∈ [0,

⌊
2i+2/∆

⌋
] F (k)← ∅

4: for v ∈ V di(v)← di+1(v), F (Index(di(v)))← F (Index(di(v))) ∪ {v}
5: for k ∈ [0,

⌊
2i+2/∆

⌋
] and F (k) ̸= ∅

6: for v ∈ F (k) that v is not finalized
7: mark v as finalized
8: for (v, x) ∈ E and x that are not finalized
9: di(x) = min(di(x), di(v) + wi(v, x))

10: F (Index(di(x)))← F (Index(di(x))) ∪ {x}
11: function Index(di(v))

12: ∆ = 2i

16·h·β , b = (j − 1) · 2i+1

13: return ⌊(di(v)− b)/∆⌋

as long as ϵ ≤ δ/β. Combining the above inequalities, we have di+1(v) ∈ [di+1(u), di+1(u) + 2i+1).
Now consider any node x on the path p = u⇝ v. Let pu = u⇝ x and pv = x⇝ v be the subpaths of p split

at node x. We claim that di(x) = di+1(u) +wi(pu) (which we shall prove last). As such, it follows from the what
was just proved that di+1(x) ∈ [di+1(u), di+1(u) + 2i+1).

Finally, we prove that di(x) = di+1(u)+wi(pu). Suppose for the sake of contradiction that di(x) ̸= di+1(u)+
wi(pu). Then by construction di(x) < di+1(u) + wi(pu). From (3.1b), di(v) ≤ di(x) + wi(pv) < di+1(u) + wi(p).
This contradicts the fact that di(v) = di+1(u) + wi(p) by assumption in the lemma statement. It thus must be
the case the di(x) = di+1(u) + wi(pu), which completes the proof.

4 Updating the Distance Estimate di

We have already shown the correctness of Algorithm 1. However, we have not yet discussed how to update di(v)
efficiently. In particular, the straightforward implementation would be to run Dijkstra’s algorithm to compute
di(v) in each iteration of Algorithm 1. Given that we set out to solve the exact SSSP problem in the first place,
using Dijkstra’s algorithm as a black box is a nonstarter.

This section provides an efficient algorithm for computing di from di+1. This algorithm can be viewed either
as a modified breadth-first search (BFS) or a restricted version of Dijkstra’s algorithm. But parallel BFS has a
span that is proportional to the distance, which could be linear in the graph size. The key feature that allows
us to obtain efficient parallel and distributed algorithms is that, due to Lemmas 3.4 and 3.5, our algorithm only
performs BFS out to O(hβ) hops. This section presents the algorithm at a high level—we defer the parallel or
distributed details, including the work and span analysis, to Section 5.

We divide the description of the algorithm into two cases. First, we discuss how to update di in rounds β
down to 1 of Algorithm 1. During these iterations, all weights wi in the graph are rounded up to some nonzero
values. Second, we discuss how to compute d0 = d̂ in round 0; this round is special because the distance update
considers only the zero-weight edges. Chechik and Mukhtar [9] use a similar method in the broadcast CONGEST
model.

4.1 Updating di in rounds i ≥ 1. Here we consider how to construct di from di+1 given that all edge weights
wi(e) > 0.

First, we consider specific subgraphs based on to the previous distances di+1. Specifically, for positive integers
j ≤

⌈
nK/2i

⌉
, we define Aj =

{
y|(j − 1)2i+1 ≤ di+1(y) < (j + 1)2i+1

}
to be the set of vertices with previous-round

distances di+1 falling in the interval j2i+1 ± 2i+1. Notice that these intervals overlap, and a vertex that belongs
to Aj may also belong to Aj−1 or Aj+1, and each vertex may belong to Aj and either Aj+1 or Aj−1.

Next, we compute di with respect to each induced subgraph G(Aj) using weights wi, and the computation
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on each subgraph is independent. Algorithm 2 provides pseudocode for the update on each induced subgraph.
At a high level, this algorithm simulates a modified breadth-first search (BFS) or restricted Dijkstra’s algorithm.
The minimum edge weight ∆ = 2i/(16hβ) allowed by weight function wi corresponds to the unit edge weight in
the BFS. But in our case, some of the weights may be larger, and hence the modification. Moreover, there is no
designated source vertex, but instead the di+1 distances act as starting points. Nevertheless, the general structure
is similar.

In more detail, Algorithm 2 proceeds in rounds. We classify the nodes in the graph based on their current
distance di, which is initialized to di+1. Specifically, we say that a node with di(v) ∈ [b, b+(k+1)∆) has index k,
where b = (j−1)2i+1 is the minimum di+1 distance of a vertex in Aj . Like BFS, during round k, all vertices with
index k (i.e., distance in [b, b+(k+1)∆) are finalized. Like Dijkstra’s algorithm, we perform edge relaxations, and
a vertex’s distance may change multiple times if it has multiple incoming edges. To facilitate a simpler parallel
implementation, we maintain a set F (k) to contain all vertices with index k. Thus, during round k, the algorithm
finalizes the distances to vertices in the frontier F (k) and relaxes their outgoing edges, thus possibly moving
some other vertices to earlier index sets than they previously belonged to. To avoid the nuisance of implementing
deletions in the parallel sets, we allow vertices to belong to multiple sets F (k), and we instead mark vertices as
finalized the first time they are processed in a frontier. In this way, vertices may be considered once for each of
their incoming edges (once per relaxation), but their outgoing edges are only processed when the vertex is first
finalized.

Finally, after computing di with respect to all of the induced subgraphs, we combine the results. Because
each vertex v belongs to at most two induced subgraphs, we simply choose the minimum di(v) computed for that
vertex in either of the two subproblems.

We next turn to correctness. First we show that Algorithm 2 correctly computes di with respect to the
induced subgraph Aj . Second, we show that di is correct overall, i.e., that working with respect to induced
subgraphs does indeed give the correct answer. The key to the argument is leveraging Lemma 3.5. In particular,
for any path p = u⇝ v with di(v) = di+1(u) + wi(p), Lemma 3.5 implies that there exists a value j such that p
is fully contained in G(Aj).

Lemma 4.1. Consider a call to UpdateInducedGraphs(G(Aj) = (Aj , E(Aj), wi)). When the algorithm
completes, for each node v ∈ Aj, we have di(v) = minu∈Aj ,u⇝v∈E(Aj)(di+1(u) + wi(u⇝ v)).

Proof. Proof by induction on round number k. We want to show that at the k-th round, for any node v with
di(v) < b + (k + 1)∆, di(v) = minu∈Aj

(di+1(u) + wi(u ⇝ v)). Note that because the algorithm uses edge
relaxations, at any time of updating di(v) we always have di(v) ≥ minu∈Aj

(di+1(u) + wi(u⇝ v)); thus, we only
need to show di(v) ≤ minu∈Aj

(di+1(u) + wi(u⇝ v)) when v is finalized.
The key observation is for each e ∈ E, wi(e) ≥ ∆. In the first round, when k = 0, if di(v) < b + ∆, then

di(v) = di+1(v) is correct. Otherwise, there would be some node u such that di+1(u) = di(v) − wi(u ⇝ v) ≤
di(v)−∆ < b, which contradicts the fact that di+1 is at least b for all nodes in Aj .

For the inductive step, we assume that by the end of the (k− 1)-th round, all nodes with di(v) < b+ k∆ are
correctly updated. Now in the k-th round, for node v with di(v) ∈ [b + k∆, b + (k + 1)∆). If di(v) = di+1(v),
we have already put it in F (k) and will finalize v; otherwise, we have di(v) = di+1(u) + wi(u ⇝ v). Consider
the penultimate node y on the path u ⇝ v and let u ⇝ y be the sub-path of u ⇝ v from u to y. We have
di(y) ≤ di+1(u) + wi(u⇝ y) ≤ di(v)− wi(y, v) < b+ (k + 1)∆−∆. Based on induction, y is correctly finalized,
and di(y) ≤ di+1(u) +wi(u⇝ y). When we finalize y, we set di(v) = di(y) +wi(y, v) ≤ di+1(u) +wi(u⇝ v) and
put v in F (k). Now in the k-th round, we extract v from F (k) and finalize di(v) ≤ di+1(u) + wi(u⇝ v).

Theorem 4.1. If we call UpdateInducedGraphs on subgraphs G(A1), G(A2), ..., G(A⌈nK/2i⌉) and set di(v) to
the minimum value of di returned by different subgraphs, then di(v) = minu∈V,u⇝v∈Edi+1(u) + wi(u⇝ v).

Proof. Note that we always have di(v) ≥ minu∈V,u⇝v∈Edi+1(u) + wi(u ⇝ v). We only need to show that
di(v) ≤ minu∈V,u⇝v∈Edi+1(u) + wi(u⇝ v).

Assume that we use p to update v in Algorithm 1 and di+1(u) ∈ [k · 2i+1, (k + 1) · 2i+1). By lemma 3.5, for
any node x on the path p, we have di+1(x) ∈ [k · 2i+1, (k+2) · 2i+1). In other words, the path p is included in the
graph G(Ak+1).

Based on Lemma 4.1, we have di(v) = mint∈[1,⌈nW/2i⌉],u′∈At,u′⇝v∈E(At)di+1(u
′) + wi(u

′ ⇝ v) ≤
minu′∈Ak+1,u′⇝v∈E(Ak+1)(di+1(u

′) + wi(u
′ ⇝ v)) ≤ di+1(u) + wi(p) = minu∈V,u⇝v∈Edi+1(u) + wi(u⇝ v).
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Algorithm 3 Propagating distances over zero-weight edges
Input: Graph G = (V,E,w) such that for any e ∈ E, we have w(e) = 0; D is the set containing possible d1 values

Output: For all v, a distance estimation d̂(v) = minu∈V,u⇝v∈Ed1(u) + w0(u⇝ v)

1: function UpdateZeroWeightGraphs(G = (V,E,w0), D)
2: dmid = the median of D
3: if |D| = 1 then

4: for v ∈ V d̂(v)← dmid

5: else
6: S ← {v | v ∈ V, d1(v) ≤ dmid}
7: Vl ← Des(S), Vu = V \Vl

8: Dl ← {d | d ∈ D, d ≤ dmid}, Du = D\Dl

9: UpdateZeroWeightGraphs(G(Vl), Dl)
10: UpdateZeroWeightGraphs(G(Vu), Du)

For our eventual performance results (Section 5), it is also important that Algorithm 2 does not perform too
many iterations. The intuition outlined in Section 3.3 was that Corollary 3.1 limits the number of hops along
any of the update paths. But this intuition is, in fact, subsumed by the fact that the subgraph computations are
sufficient—by construction, Algorithm 2 only needs O(hβ) iterations before reaching the largest possible distance
in that subgraph.

4.2 Updating d̂ in the final round. We now consider how to produce d̂ = d0 from d1. Here, the algorithm
starts from a graph with all nonzero-weight edges removed. The goal is then to calculate d̂(v) equal to the
minimum d1 value of its ancestor nodes. Our method follows Chechik and Mukhtar’s algorithm [9].

We use a divide-and-conquer method to solve the problem. In the algorithm 3, we will maintain a set
D such that D contains all possible d1 values for v ∈ V . At the beginning, for each node v, we call
UpdateZeroWeightGraphs(G, {d1(v) | v ∈ V }), where D contains all possible d1 value. If there is only

one value in D, then all nodes’ d̂ are this value. Otherwise, we first sort D. Let dmid be the median of D and S
be the set that contains all nodes whose d1 is at most dmid. The descendants of S, which we denote by Vl, are
the nodes v that should have d̂(v) ≤ dmid. Conversely, Vu = V \Des(S) is the set of nodes with higher distance.
The Algorithm 3 recurs on induced graphs with Dl and Du set.

The only complication with respect to producing the parallel or distributed version of this algorithm is finding
the set Vl. We discuss this in Section 5, but suffice it to say that this can be solved by the single-source reachability
problem, which is a special case of approximate SSSP. As such, this problem can be solved using the same tools
we are already applying.

The following lemma plays a key role in showing the correctness and the efficient implementation.

Lemma 4.2. Fix two nodes u, v ∈ V for graph G = (V,E,w0). If d̂(v) = d1(u), then there exists a zero-weight
path p from u to v in E(G) with |p| ≤ h. Furthermore, consider every call UpdateZeroWeightGraphs(G′, D′):
if v ∈ V (G′), then d1(u) ∈ D′ and the path p ∈ E(G′).

Proof. By assumption that d̂(v) = d1(u), there exists a path u⇝ v with weight 0. Because the graph is a hopset
graph, there is also a path p from u to v containing at most h hops with w(p) ≤ (1 + ϵ)w(u ⇝ v) = 0. Since p
contains only zero-weight edges, it is also include in the graph of zero-weight edges.

To show the second part, we will use induction over level of recursion, from top to bottom. At the beginning,
we know D contains all possible d1 value and all nodes are in the graph, and hence the claim holds trivial. For
the inductive step, consider a call to UpdateZeroWeightGraphs(Ḡ, D̄) with v ∈ V (Ḡ). Assume p ∈ E(Ḡ),
d1(u) ∈ D̄. The goal is to show that all nodes on p go to the same subproblem, and moreover that the corresponding
D set contains the value d1(u). (The only distance value we need to argue is passed to the appropriate subproblem

is d1(u) because for every node x on p, d̂(x) = d1(u).)
Let S̄ be the set of vertices with distance less than the median of D̄. Let x be an arbitrary node on path p

We have two cases:
Case 1. Suppose u ∈ Des(S̄), i.e., d1(u) ≤ dmid. Because p is a 0-weight path, we also have x ∈ Des(u) ⊆ Des(S̄).
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Moreover, u ∈ Des(S̄) implies d1(u) ∈ D̄l.
Case 2. Suppose u ̸∈ Des(S̄), and hence u ∈ Vu. By the inductive assumption, d1(u) ∈ D̄, and so d1(u) > dmid.

Because d̂(x) = d1(u), we have d1(x) ≥ d1(u). It thus follows that x ∈ Vu as well.
In both cases, all nodes x on p go to the same subproblem as u, as does the distance d1(u).

Using the lemma 4.2, we next show that Algorithm 3 is correct.

Lemma 4.3. Let D = {d1(v)|v ∈ V }. When the top-level call to UpdateZeroWeightGraphs(()V,E,w0), D)

completes, we have d̂(v) = minu∈V,u⇝v∈Ed1(u) + w0(u ⇝ v). Moreover, the recursion depth of this algorithm is
O(log n).

Proof. To bound the recursion depth, consider the D array. The size of D reduces by half in each level of recursion.
So we have O(log |D|) = O(log n) levels of recursion.

Now consider any node u such that d̂(v) = d1(y) +w0(u⇝ v). Then there is a zero-weight path from u to v.
Thus, we can apply Lemma 4.2 to conclude that when v arrives at a base case, d1(u) is the only distance in its

subproblem. And thus d̂(v)← d1(u).

5 Translating to the Parallel and Distributed Models

In this section, we describe the details of our exact SSSP algorithm in the parallel and distributed model. In the
parallel model, we only need to repeat constructing the hopset graph and computing the distance estimate some
times. In the distributed model, we have to use the framework of Forster and Nanongkai and compute exact SSSP
on the skeleton graph instead of the original graph.

5.1 Implementation in the parallel model. We consider the work-span model[11], where the work is defined
as the total number of instructions executed across all processors, and the span is the length of the critical path
(i.e., the length of the longest chain of sequential dependencies).

Updating di without zero-weight edges. To construct the induced graph, we first put all nodes in an array
and sort the array based on di+1(v). For each Aj , we can simply mark the first and last nodes and compute the
size of Aj . we can call a new array to hold all nodes and each node can decide its location by subtracting its index
with the first node index in the sorted array. Let mj and nj be the number of edges and nodes in the induced
graph G(Aj), each node only appears in at most two induced graphs, so

∑
mj = O(m) and

∑
nj = O(n). In

total, it takes O(
∑

mj) = O(m) work and Õ(1) span to construct all induced graphs.
In each induced graph, Algorithm 2 is naturally parallelized. In each induced graph, we need to search with

depth O(2i/∆) = O(hβ), and each edge will be accessed once. We only need to focus on the following point;
We cannot afford to transverse all the elements in F . If F (k) is empty, we should skip it. Otherwise, the work
is at least Ω(hβ) in each induced graph. We aim to take Õ(mj) work for each induced graph. To implement
F (k) efficiently, we can use the parallel ordered set as a tool. Specifically, there exist implementations of parallel
ordered sets [2] that support the following operations:

• Initialization, given a vector of size n, we can construct a new ordered set in Õ(n) work and Õ(1) span and
get an identifier of the ordered set.

• We can perform merge in O(m log(n/m+ 1)) work and O(logm log n) span for sets of size m and n where
n ≥ m.

• We can enumerate all elements in a size n set in O(n) work and Õ(1) span.

• We can extract the minimum value with O(1) work and Õ(1) span.

• Given a key, we can return two ordered sets TL and TR such that all elements in TL (TR) are less (larger)
than the key with Õ(1) work and Õ(1) span.

Now we can use the parallel ordered set to implement F (k). In lines 3-4 of Algorithm 2, we simply compute
INDEX(di(v)) and initialize the parallel ordered set with element (index(di(v)), v). In lines 5 - 10, to transverse
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the next non-empty F (k), we can first extract the minimum value (k, v) from the parallel ordered set, then we will
split the parallel ordered set by using the key (k+0.5, ∗) and get all the items whose index once was k. Then we
can copy F (k) into a vector by enumerating the returned parallel ordered set concatenating the minimum index
node. There might be some finalized nodes, so we need a vector to distinguish all finalized nodes. We will sort
all nodes from F (k) according to whether it is finalized or not. Now, all vertices needed to update are stored in
a vector, and each vertex might have several outgoing edges. We can use the prefix sum to compute the location
of each outgoing edge and then update the outgoing nodes. Again, there might be some finalized nodes and we
do not need to insert them back into the parallel set. We can filter all finalized nodes by sorting and initializing
another parallel set and merging it with the original one. Throughout the process, there may be duplicates index
for each node, but the work is still bounded, since we only transverse each edge once, which in total, Õ(mj)

work. The span in each iteration is Õ(1) and in total is Õ(hβ). In summary, updating all induced graphs takes∑
Õ(mj) = Õ(m) work and Õ(hβ) span. This gives us the following lemma:

Lemma 5.1. Algorithm 2 can be implemented in Õ(m) work and Õ(h logK) span in the work-span model.

Updating d̂ on zero-weight graph. All codes in Algorithm 3 are straightforward, except that we need to
compute Vl ← Des(S). Lemma 4.2 gives us a way to compute Vl. In each UpdateZeroWeightGraphs(G′, D′),
if v ∈ Vl, there must be a path p from u ∈ S to v that contains at most h edges. We can add a virtual source
node s′ and add edges from s′ to all nodes in S, then a h-hop BFS [20] from s′ can solve the reachability problem
for Vl. The h-hop BFS takes Õ(mj + h) work and O(h) span, where mj is the number of edges in the induced
graph. Note that to avoid O(h) work on each induced graph, when mj < h, we do O(mj)-hop BFS and the work

is Õ(mj). To recurse on the induced graph, we again sort the nodes and construct the subgraphs with Õ(mj+nj)

work and Õ(1) span. Each level of recursion is a partition of the graph and we have O(log n) level of recursion.
This gives us the following lemma:

Lemma 5.2. Algorithm 3 can be implemented in Õ(m) work and Õ(h) span in the work-span model.

Combining together. Note that when we update the distance estimation, we have to run O(logK) rounds of
Algorithm 2 and O(1) rounds of the Algorithm 3.

Lemma 5.3. Given a (h, ϵ = 1
4 log(2nK) )-hospset graph G with non-negative integer weights from {0, 1, 2, · · · ,K},

there is a deterministic algorithm computing the distance estimate for the exact SSSP with Õ(m logK) work and
Õ(h log2 K) span.

Proof. Combining theorem 3.1, Lemma 5.1 and Lemma 5.2, the lemma holds when ϵ ≤ 1
4β .

To make a general graph a (h, ϵ)-hopset graph, we can use the parallel hopset results from Cao, Fineman,
and Russell [6].

Theorem 5.1. [6] For any directed graph G = (V,E) with nonnegative integer edge weights from {0, 1, 2, ...K},
there exists a randomized parallel algorithm that computes a (n1/2+o(1), ϵ)-hopset of size Õ(n log(nK)/ϵ2), with
high probability. The algorithm takes Õ(m log(nK)/ϵ2+n log2(nK)/ϵ4) work and n1/2+o(1)/ϵ span, also with high
probability.

To solve the exact SSSP for digraphs with edge weight from {0, 1, ...,W}, we have to transfer a general graph
to a hopset graph, compute the distance estimate, and repeat the whole process logW times. Fortunately, when
we construct the hopset and compute the distance estimate, we can assume K = O(n) and set ϵ = 1

4 log(2nK) ; this

gives us the following theorem.

Theorem 5.2. There is a parallel algorithm that given an n-node m-edge directed graph with non-negative integer
edge weights from {0, 1, 2, · · · ,W} solves the exact single source shortest path problem with Õ(m logW ) work and
n1/2+o(1) logW span with high probability.

Proof. The theorem is implied by Lemma 5.3 and Theorem 5.1.
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5.2 Implementation in the distributed model. We consider the SSSP problem in the CONGEST
model[24], which is one of the most studied message-passing models in the field of distributed computing.
The CONGEST model is characterized by synchronized communication in a network via non-faulty bounded-
bandwidth links. In the CONGEST model, a network is modeled as an undirected n-node graph N = (V,L),
where each node of V is modeled as a processor, and each edge (u, v) ∈ L implies a bidirectional communication
link between u and v. Each node of V represents a processor with a unique ID of size O(log n) and has infinite
computational power that initially only knows its adjacent edges in L and their weights. Nodes communicate in
synchronous rounds, where in each round, every node may send to each of its neighbors a different message of
size B = Θ(log n) and subsequently receive the messages sent by its neighbors. In each round, every node can
perform unlimited internal computations based on all messages it has received so far. In a round, the messages
sent by a node may be different to its various neighbors. The time complexity of an algorithm is measured by the
number of rounds. The time complexity is usually expressed in terms of n and D, where n = |V | and D is the
diameter of N when the edge weight is omitted.

For SSSP problems in the CONGEST model, the network N is the same as the graph G except that in G
the edges are directed, while in N the edges are undirected. To start, each node knows its set of incoming and
outgoing edges and their weights, as well as whether it is the source node. Since every node can learn n in O(D)
rounds, we assume that all nodes already know n. At the end, each node v must learn its distance dist(s, v), but
these distances should not be communicated back to s.

We heavily use the concept of skeleton graph. When we say skeleton graph, we mean a virtual graph
G′ = (V ′, E′, w′) over a subset of nodes V ′ ⊂ V . There may be no directed link for an edge e ∈ E′, but we require
each node to know its incoming and outgoing edges and whether it is in the skeleton graph or not. The following
lemmas are standard results for distributed computation in the CONGEST model.

Lemma 5.4. [24] Suppose each v ∈ V holds kv ≥ 0 messages of O(log n) bits each, for a total of K =
∑

v∈V kv.
Then, all nodes in the network can receive these K messages within O(K +D) rounds.

Lemma 5.5. [17] Consider k distributed algorithms A1, ..., Ak. Let dilation be such that each algorithm Ai

finishes in dilation rounds if it runs individually. Let congestion be such that there are at most congestion
messages, each of size O(log n), sent through each edge (counted over all rounds), when we run all algorithms
together. There is a distributed algorithm that can execute A1, ..., Ak in Õ(dilation+ congestion) rounds in the
CONGEST model.

Framework of Forster and Nanongkai [15]. Next, we present an overview of the exact SSSP algorithm, which
follows the Forster and Nanongkai [15] framework. The algorithm is parameterized by α, to be set later. Steps 1, 3
and 5 are the same as Forster and Nanongkai’s algorithm, and Step 2 is similar. In Step 2, Forster and Nanongkai’s
algorithm computes distance estimates d̃(u, v) for each node v ∈ S. Step 2 performs the same computation and
additionally computes the distance d̃(u, v) for each node u ∈ S. The additional distance estimates are used in
the computation of Step 4. The main difference is in Step 4. Both algorithms have to solve the exact SSSP
on the skeleton graph. Forster and Nanongkai [15] provide two methods, simulating Dijkstra algorithm and
recursing the exact SSSP on the skeleton graphs. Chechik and Mukhtar [9] improve the exact SSSP result by
using iterative gradual rounding in a different way. We combine the method of distributed hopsets and iterative
gradual rounding, which leads to a faster algorithm for exact SSSP on the skeleton graphs.

1. Select each node v ∈ V to be in the set of skeleton nodes S with probability Õ(α/n). Add the source s to
S. If |S| > Ω̃(α), abort the algorithm.

2. Let g = Õ(n/α). For each skeleton node u ∈ S, compute 1/2-approximate g-hop distances from u, i.e.,

distance estimation d̃(u, v) such that d
(g)
G (u, v)/2 ≤ d̃(u, v) ≤ d

(g)
G (u, v). For each u ∈ S, v ∈ S, both u and

v learn d̃(u, v).

3. Construct the skeleton graph GS = (S,ES , ws), where ES = S × S, and ws(u, v) =
⌈
d̃(u, v)

⌉
. For nodes

u, v ∈ S, both u and v know ws(u, v).

4. Solve the exact SSSP on the skeleton graph GS with s as the source, i.e., for each v ∈ S, compute dGS
(s, v).
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5. Run the Bellman-Ford algorithm g rounds in the graph G with the starting node set S. Notice that for
node v ∈ S, dGs

(s, v) = dGs∪G(s, v), and we already compute dGS
(s, v). The key observation is for any

node u ∈ V , d
(g)
Gs∪G(s, u) = dGs∪G(s, u), so g rounds the Bellman-Ford algorithm enough to compute the

exact SSSP in the graph Gs ∪G.

This framework computes a distance estimate that can be used to solve the exact SSSP. To solve the exact
SSSP for graph G, we need to repeat O(logW ) times the above algorithm, but each time we repeat, we can
assume that the maximum edge weight in each round is K = O(n). This will save us a O(logW ) factor in the
final running time.

In the next subsection, we will show that Step 4 can be implemented in the following rounds.

Lemma 5.6. In the CONGEST model, there is a randomized algorithm solving exact SSSP problems on an α

node skelenton graphs with non-negative integer edge weights from {0, 1, 2, ...,K}in Õ((αρ2 + Dα1/2+o(1)

ρ ) logK)

rounds, where ρ ∈ [1, α1/2+o(1)).

Cost of the algorithm. Step 1 takes Õ(α +D) rounds to broadcast S to all nodes. In Step 2, computing the
distance estimates can be done in Õ(α+g+D) rounds. Forster and Nanongkai’s algorithm only computes forward
distance estimates, but the backward distance estimates can be computed symmetrically. Step 3 computes the
skeleton graph and broadcasts it to the graph, which can be done in Õ(α+D) rounds. Based on Lemma 5.6, it

takes Õ(αρ2 + Dα1/2+o(1)

ρ ) rounds to solve the exact SSSP on the skeleton graph. Finally, Step 5 takes Õ(D + g)
rounds to run the Bellman-ford algorithm.

The total number of rounds for the algorithm is Õ((D + n
α + αρ2 + Dα1/2+o(1)

ρ ) logW ), where logW comes
from the fact that we need to repeat the entire algorithm logW times. We have three cases.

1. If D = o(n1/4), set ρ = Θ̃(1) and α = Θ̃(
√
n). The whole algorithm takes Õ(

√
n logW ) rounds.

2. If D = Ω(n2/3), set ρ = α1/2+o(1) and α = Õ(n1/3). The whole algorithm takes Õ(D logW ) rounds.

3. Otherwise, set ρ = Õ( D2/5

n1/10−o(1) ) and α = Õ(n
3/5+o(1)

D2/5 ). The whole algorithm takes Õ(D2/5n2/5+o(1) logW )
rounds.

Proof. [Proof of Theorem 1.3] Combining all three cases, the algorithm solves the exact SSSP in Õ((
√
n +D +

D2/5n2/5+o(1)) logW ) rounds.

5.2.1 Solving exact SSSP on the skeleton graphs. In this subsection, we show an algorithm to compute
the distance estimate for an α-node skeleton graph G. At the end of the algorithm, each node v knows its own
d̂(v). Then, based on Lemma 5.4, all nodes in the skeleton graph can learn all d̂ in O(α+D) rounds and reweight
its incoming and outgoing edges by itself.

Updating di without zero-weight edges. At the beginning, each node v knows its own di+1(v) value. To
construct the subgraph, we give each Aj an identifier. There are at most α nodes; we have at most 2α different
induced graphs. Each node will broadcast its own di+1(v) and set up a O(logα) bit identifier for each induced
graph. Now, on each induced graph, in the k-th round, if a node v is not finalized and di(v) ∈ F (k), it will
broadcast its di(v) and mark itself as finalized. Based on Lemma 5.4, broadcasting all unfinalized nodes in F (k)
takes O(D + xk) rounds and O(xk) congestion, where xk is the number of unfinalized nodes in F (k). In total,
Algorithm 2 takes Õ(Dhβ + nj) rounds and O(nj) congestion, where nj = |Aj | is the number of nodes on the

induced graph G(Aj). Using Lemma 5.5, it takes Õ(Dh logK + α) rounds to run Algorithm 2 on all induced
graphs.

Updating d̂ on zero-weight graph. Algorithm 3 is a recursive algorithm. At each level of recursion, we
partition the graphs and run BFS with depth h on the induced graph. Note that the recursion depth is at most
O(log n), it takes O(log n) bits to mark each different induced graph. In total, Algorithm 3 takes Õ(Dh + α)
rounds. This gives us the following lemma.

Lemma 5.7. Given an α-node (h, ϵ = 1
4 log(2nK̂)

)-hospset skeleton graph G with non-negative integer weights

from {0, 1, 2, ...K̂}, there is a deterministic algorithm computing the distance estimate for exact SSSP in
Õ(Dh log2 K̂ + α log K̂) rounds.
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Proof. We have to run Algorithm 2 log K̂ times and Algorithm 3 once, which gives us Õ(Dh log2 K̂ + α log K̂)
running time.

Cao, Fineman, and Russell [8] have the following hopsets results for skeleton graphs,

Lemma 5.8. [8] Given a n-node skeleton graph GT over a subset of nodes T ⊂ V with non-negative integer
weight from {0, 1, 2, ..., K̂}, there is a randomized algorithm that constructs (h = α1/2+o(1)/ρ, ϵ)-hopsets of size
Õ(αρ2 log K̂/ϵ2) and takes Õ(Dα1/2+o(1) log K̂/(ρϵ)+αρ2 log K̂/ϵ2) rounds w.h.p. in the CONGEST model, where
ρ ∈ [1, α1/2+o(1)].

The hopset size is Õ(αρ2 log K̂/ϵ2), we can use Lemma 5.4 to broadcast edges in the hopset and construct a
new skeleton graph with the hopset property. In the new skeleton graph, we can compute the distance estimate
and the running time is given by Lemma 5.7. Combining Lemma 5.7 and Lemma 5.8 gives us Lemma 5.6.

Proof. [Proof of Lemma 5.6.] Note that the maximum edge weight is K, but when we compute the distance
estimate each round, the maximum edge weight is K̂ = O(n). The logK factor comes from the fact that we need
to repeat Algorithm 1 logK times.
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