
ar
X

iv
:2

50
3.

20
88

3v
2

 [
cs

.D
S]

 3
1

M
ar

 2
02

5

Solving the Correlation Cluster LP in Sublinear Time

Nairen Cao1 Vincent Cohen-Addad* Euiwoong Lee† Shi Li ‡

David Rasmussen Lolck§ Alantha Newman¶ Mikkel Thorup||

Lukas Vogl** Shuyi Yan†† Hanwen Zhang‡‡

April 1, 2025

Abstract

Correlation Clustering is a fundamental and widely-studied problem in unsuper-
vised learning and data mining. The input is a graph and the goal is to construct a
clustering minimizing the number of inter-cluster edges plus the number of missing
intra-cluster edges.

[CCL+24] introduced the cluster LP for Correlation Clustering, which they argued
captures the problem much more succinctly than previous linear programming formu-
lations. However, the cluster LP has exponential size, with a variable for every possible
set of vertices in the input graph. Nevertheless, [CCL+24] showed how to find a feasible

solution for the cluster LP in time O(npoly(1/ε)) with objective value at most (1+ ε) times
the value of an optimal solution for the respective Correlation Clustering instance. Fur-
thermore, they showed how to round a solution to the cluster LP, yielding a (1.437+ ε)-
approximation algorithm for the Correlation Clustering problem.

The main technical result of this paper is a new approach to find a feasible solution for

the cluster LP with objective value at most (1 + ε) of the optimum in time Õ(2poly(1/ε)n),
where n is the number of vertices in the graph. We also show how to implement the
rounding within the same time bounds, thus achieving a fast (1.437+ ε)-approximation
algorithm for the Correlation Clustering problem. This bridges the gap between state-
of-the-art methods for approximating Correlation Clustering and the recent focus on fast
algorithms.

1New York University, Email: nc1827@nyu.edu
*Google Research, Email: cohenaddad@google.com
†University of Michigan, Email: euiwoong@umich.edu. Supported in part by NSF grant CCF-2236669 and

Google.
‡Nanjing University, Email: shili@nju.edu.cn. Affiliated with the School of Computer Science in Nanjing

University, and supported by the State Key Laboratory for Novel Software Technology, and the New Cornerstone
Science Laboratory.

§University of Copenhagen, Email: dalo@di.ku.dk. Supported by VILLUM Foundation Grant 54451, Basic
Algorithms Research Copenhagen (BARC)

¶Université Grenoble Alpes, Email: alantha.newman@grenoble-inp.fr
||University of Copenhagen, Email: mthorup@di.ku.dk. Supported by VILLUM Foundation Grant 54451,

Basic Algorithms Research Copenhagen (BARC)
**EPFL, Email: lukas.vogl@epfl.ch. Supported by the Swiss National Science Foundation project 200021-

184656 ”Randomness in Problem Instances and Randomized Algorithms”.
††University of Copenhagen, Email: shya@di.ku.dk. Supported by VILLUM Foundation Grant 54451, Basic

Algorithms Research Copenhagen (BARC).
‡‡University of Copenhagen, Email: hazh@di.ku.dk. Supported by VILLUM Foundation Grant 54451, Basic

Algorithms Research Copenhagen (BARC) and Starting Grant 1054-00032B from the Independent Research Fund
Denmark under the Sapere Aude research career programme.

1

http://arxiv.org/abs/2503.20883v2

Contents

1 Introduction 3

1.1 Our Results . 4
1.2 Technical Overview . 5

2 Preclustering 8

2.1 Computational Models. 8
2.2 Preclustering . 8

3 Multiplicative Weights Update Framework 10

3.1 Converting cluster LP to covering cluster LP 10
3.2 The MWU Algorithm . 14

4 Finding a Partial Clustering with Small Ratio in Polynomial Time 17

5 Finding One Small Ratio Cluster 21

5.1 Overview of the Algorithm . 21
5.2 Bounding ∆(C∗i+1)− ∆(C∗i) . 26

6 Refinements to Reach Nearly Linear Time 30

6.1 Approximate Ratio of Algorithm 6 . 31
6.2 Runtime of Algorithm 6 . 33
6.3 Wrap-Up: Proof of Nearly Linear Time Algorithm for cluster LP 37

7 Finding a Partial Clustering with Small Ratio in Sublinear Time 37

7.1 Compute dcross(v) . 38
7.2 Approximate Ncand . 40
7.3 Estimate the cost of a cluster T . 41
7.4 Finding one small ratio cluster in sublinear time 43
7.5 Determine the correct guess R of the optimal cost 44

8 MPC Implementation 44

8.1 Approximate Ratio of Algorithm 9 . 46
8.2 Number of Iterations of Algorithm 9 . 46
8.3 Wrap-Up: Proof of MPC Algorithm for Theorem 1 50

9 Rounding Algorithms 51
9.1 Nearly Linear Time Rounding Algorithm . 53
9.2 Rounding in Sublinear Model . 54

2

1 Introduction

Correlation Clustering, introduced by Bansal, Blum, and Chawla [BBC04], is a fundamen-
tal problem in unsupervised machine learning that neatly captures the inherent tension be-
tween grouping similar data elements and separating dissimilar ones. Given a complete
graph where each edge receives either a positive or a negative label, representing the pair-
wise relationship of its endpoints, the objective is to partition the vertices into clusters that
minimize the number of “unsatisfied” edges: positive edges across clusters and negative
edges within clusters. This framework naturally arises in diverse applications, including
clustering ensembles [BGU13], duplicate detection [ARS09], community mining [CSX12],
link prediction [YV18] disambiguation tasks [KCMNT08], image segmentation [KYNK14],
and automated labeling [AHK+09, CKP08].

Despite its widespread applicability, Correlation Clustering is APX-hard [CGW05], mo-
tivating a rich line of research focused on approximation algorithms. Early work by [BBC04]
provided an O(1)-approximation, which was subsequently improved to a 4-approximation
by [CGW05]. The influential Pivot algorithm [ACN08] achieved a 3-approximation, and fur-
ther refinements using LP-based techniques culminated in a 2.06-approximation [CMSY15],
nearly matching the integrality gap of 2.

Recent work has shown how to surpass this barrier. Cohen-Addad, Lee and Newman
employed the Sherali-Adams hierarchy to obtain a (1.994+ ε)-approximation [CLN22], which
was later improved to (1.73 + ε) by Cohen-Addad, Lee, Li and Newman, using a new
so-called preclustering technique to preprocess the instance [CLLN23]. Most recently, Cao,
Cohen-Addad, Lee, Li, Newman and Vogl introduced the cluster LP framework which gen-
eralizes all previously known formulations, and showed how to round it to obtain a (1.437+
ε)-approximation in polynomial time [CCL+24]. However, the cluster LP (see Section 1.1 for
details) has exponential size: It contains a variable for each subset of the vertices indicating
whether this subset is a cluster or not. The recent work of [CCL+24] leverages the preclus-
tering method to compute a solution to the cluster LP in time O(npoly(1/ε)) whose value is
within a (1 + ε)-factor of the cost an optimal clustering, hence leading to a polynomial-time
approximation algorithm.

Correlation Clustering is a versatile, fundamental model for clustering and has thus re-
ceived a lot of attention from practitioners. Therefore, a large body of work studying Cor-
relation Clustering in popular practical computation models has emerged. Since 2018, re-
searchers have shown how to obtain a (3 + ε)-approximation to Correlation Clustering in
streaming [BCMT23, MC24], sublinear time [AW22], the Massively Parallel Computation
(MPC) model [BCMT22, CHS24, DMM24], or vertex or edge fully dynamic setting [BCC+24,
DMM24]. For all but the dynamic setting, a very recent work by Cohen-Addad, Lolck,
Pilipczuk, Thorup, Yan and Zhang [CLP+24] has provided a unified approach achieving
a (1.847 + ε)-approximation to Correlation Clustering in all the above models (1.875 for the
MPC model) using a new local search algorithm.

In general, the approximation guarantees obtained in these various restricted settings
have remained significantly higher than the best known polynomial time approximation of
(1.437 + ε), which employed computationally expensive solutions to Sherali-Adams relax-
ations of Correlation Clustering to solve the cluster LP.

Thus, it is natural to consider what we can achieve when we are allowed limited com-
putation time. For instance, How well can Correlation Clustering be approximated in

(sub)linear time? Here, by linear time, we mean time linear in the number of +edges, and
by sublinear time, we mean time linear in the number of vertices.

In this work, we answer this question by showing how to solve and round the cluster LP
in sublinear time, matching the state-of-the-art approximation achieved in [CCL+24]. This

3

opens up a new path to study Correlation Clustering in other computational models.

Notation. Before we explain our results in more detail, we introduce some basic notation.
The input to the correlation clustering problem is a complete graph where each edge is la-
beled either as a +edge or a −edge. For a graph G, we often denote its vertex set by V(G)
and its edge set by E(G). We let G = (V, E) represent the subgraph induced by the +edges

(i.e., E+ = E(G)), while the set of −edges is given by E− = (V(G)
2) \ E(G). Let n = |V|

and m = |E| represent the number of vertices and +edges in G, respectively. Given a graph
G and a subset V ′ ⊆ V(G), G[V ′] denotes the subgraph of G induced by V ′. For technical
reasons, we assume E contains all n self-loops {uu : u ∈ V}.

For two sets A and B, we use A
⊕

B = (A \ B) ∪ (B \ A) to denote their symmetric
difference. For simplicity, we use the following shorthand. Given a function or vector f and
a set S, if f outputs reals, then f (S) = ∑e∈S f (e) or f (S) = ∑e∈S fe.

Finally, we emphasize that we always use OPT to denote an optimal clustering for a
given Correlation Clustering instance, and we use cost(OPT) to denote its cost, which we
will formally define shortly in Section 1.2.

1.1 Our Results

The cluster LP was introduced in [CCL+24]. In this formulation of Correlation Clustering,
we have a variable zS for every non-empty subset S ⊆ V, where zS indicates whether S
forms a cluster in the output clustering. Additionally, for every pair of vertices uv ∈ (V

2), the
variable xuv indicates whether u and v are separated in the clustering.

min obj(x) := ∑
uv∈E+

xuv + ∑
uv∈E−

(1− xuv) s.t. (cluster LP)

∑
S∋u

zS = 1 ∀u ∈ V

∑
S⊇{u,v}

zS = 1− xuv ∀uv ∈

(
V

2

)
.

With this formal definition of the cluster LP, our main results are stated in the following
theorems.

Theorem 1 (Efficient cluster LP). Let ε, δ > 0 be small enough constants and let OPT be the
cost of the optimum solution to the given Correlation Clustering instance. Then there is a small
∆ = poly(ε) such that the following statement holds. One can output a solution (zS)S⊆V to the
cluster LP with obj(x) ≤ (1 + ε)OPT in expectation, described using a list of non-zero coordinates
such that each coordinate of z is either 0 or at least ∆. In the various models, the respective procedure
has the following attributes.

• (Sublinear model) The running time to compute z is Õ(2poly(1/ε)n).

• (MPC model) It takes 2poly(1/ε) rounds with O(nδ) memory per machine and total memory
Õ(poly(1

ε)m), or takes poly(1
ε) rounds with O(nδ) memory per machine and total memory

Õ(2poly(1/ε)m).

We call the non-zero entries of a solution (zS)S⊆V its support and refer to it as supp(z).

4

Rounding Algorithms. Given a solution z to the cluster LP, we can round it to a solution
for Correlation Clustering efficiently as well. Concretely, we prove the following theorem.

Theorem 2 (Efficient Rounding Algorithm). Let ε > 0 be a small enough constant and ∆ =
poly(1/ε). Given a solution to the cluster LP (zS)S⊆V where each coordinate of z is either 0 or at
least ∆, one can output a clustering with expected cost at most (1.437 + ε)obj(x) in time Õ(n/∆2).

Combining Theorem 1 and Theorem 2 gives us our main conclusion for Correlation Clus-
tering.

Corollary 3. There exists a (1.437 + ε)-approximation algorithm for Correlation Clustering that
runs in time Õ(2poly(1/ε)n).

Remark We emphasize that the sublinear-time algorithm outputs a clustering. However,
we do not know the number of disagreements for the clustering.

1.2 Technical Overview

We first discuss the cluster LP in more depth.

Cluster LP. Given a set S, let E+(S, V \ S) = {uv ∈ E+ | u ∈ S, v 6∈ S or u 6∈ S, v ∈ S}
denote the set of +edges with exactly one endpoint in S, and let E−(S) = {uv ∈ E− | u, v ∈
S} denote the set of −edges with both endpoints in S. We can rewrite the objective value of
cluster LP using z values instead of x values as

cost(z) := ∑
S⊆V

cost(S) · zS,

where cost(S) is the cost contribution of the cluster S and

cost(S) :=
1

2
· |E+(S, V \ S)|+ |E−(S)|. (1)

The cluster LP is equivalent to minimizing cost(z), subject to the following constraints.

min cost(z) s.t. (cluster LP)

∑
S∋u

zS = 1 ∀u ∈ V

zS ≥ 0 ∀S ⊆ V, S 6= ∅.

Difficulty of Solving cluster LP. A natural approach to solving a linear program with an
exponential number of variables is to solve the dual, which has an exponentially many con-
straints, but polynomially many variables and could potentially be solved via a polynomial-
time separation oracle. In the case of the cluster LP, we have the following dual linear pro-
gram containing a variable for each vertex, which can take on a possibly non-positive value.

max ∑
u∈V

qu (dual cluster LP)

∑
u∈S

qu ≤ cost(S) ∀S.

In this case, it is not obvious how to find an efficient separation oracle. However, a subrou-
tine used in the multiplicative weights algorithm (discussed next) does yield an approximate
separation oracle. Previous approaches to finding a solution for the cluster LP with objec-
tive value at most (1 + ε)cost(OPT) involved solving a Sherali-Adams relaxation containing
npoly(1/ε) constraints [CCL+24].

5

Multiplicative Weights Update Framework. We will use the multiplicative weights up-
date (MWU) framework by Plotkin, Shmoys, and Tardos [PST95] to solve the cluster LP
approximately. Actually, we will solve a covering linear program that agrees with the cluster
LP on its optimal solutions, but is better adapted for the MWU framework. The framework
maintains a weight wv for each vertex constraint ∑S∋v zS ≥ 1. During each step t, the vertex
constraints are collapsed into a single constraint, each scaled according to the normalized
vertex weight. The resulting optimization problem is the following.

min cost(z) s.t. (2)

∑
S

p(S)zS ≥ 1 (3)

zS ≥ 0 ∀S ⊆ V, S 6= ∅. (4)

Here, p(S) is the normalized weight of vertices in S. The optimal solution to this problem is
the set S ⊆ V that has the smallest cost to vertex weight ratio. However, instead of solving
the problem optimally we will find a family of several sets that have a small cost to vertex
weight ratio compared to the cost of the optimal clustering. To be more precise, we con-
structing a partial clustering F that covers at least a constant fraction P of the vertex weight.
We set zC = 1

P for each cluster C ∈ F as the solution for step t. Then, each vertex weight is
scaled depending on the margin by which z violates the covering constraint of that vertex.
We can show that a constant number of rounds of this framework is enough to produce an
approximately optimal solution to the cluster LP.

Finding the Partial Clustering. We will find a family F of disjoint clusters where each
cluster C ∈ F has a small cost to vertex weight ratio. Moreover, this family will cover a
constant fraction of the total vertex weight. Given a vertex r and a guess R for the cost of the
optimal solution, we can efficiently find a single cluster Cr ∋ r with a cost to vertex weight
ratio at most R if such a cluster exists. In particular, if the cluster C ∈ OPT that contains
the vertex r achieves the ratio R, then we will find a cluster Cr that achieves a ratio close
to R. There has to exist a cluster C ∈ OPT that achieves the ratio R since the normalized
vertex weight gives a probability distribution. Thus, we can find a cluster Cr for each vertex
r ∈ V and add the cluster with the best ratio (which is at most R) to the partial clustering
F . We then remove the vertices already covered by F and update all clusters Cr that contain
covered/lost vertices. We repeat the process until F covers a constant fraction of the total
vertex weight.

Finding a Small Ratio Cluster. The problem we aim to solve is as follows: given a weight
function w for each vertex, we seek a cluster C∗ that minimizes the expression cost(C∗) −

∑v∈C∗ w(v), where cost(C∗) represents the Correlation Clustering cost associated with se-
lecting C∗ as a cluster (see (1)). A small ratio cluster will yield a negative value for this
expression.

Inspired by the local search algorithm in [CLP+24], we use a similar approach to find
such a C∗. Let’s focus on how to find C∗ to minimize this difference. We start by assuming
we know C∗, but we cannot directly query whether a vertex v ∈ C∗ or not. In this case,
our key observation is that if C∗ is the cluster that minimizes cost(C∗) − ∑v∈C∗ w(v), then
according to the optimality of C∗, we have:

1. Marginal(C∗, v)−w(v) ≤ 0 for all v ∈ C∗, and

2. Marginal(C∗, v)−w(v) ≥ 0 for all v /∈ C∗,

6

where Marginal(C∗, v) = cost(C∗ ∪ {v}) − cost(C∗ \ {v}) is the marginal cost of adding v
to C∗ or removing v from C∗. At first glance, it seems we don’t make progress, as we don’t
know how to compute Marginal. The key idea here is that if we can sample some vertices
from C∗, we can obtain a good estimate for Marginal. However, if C∗ has no structure, we
have no way to sample nodes from C∗.

Thanks to the preclustering step [CLLN23], which roughly identifies almost-cliques that
should be clustered together and prohibits pairs that are impossible to place in the same
cluster, we can make a good guess about the size of C∗. After preclustering, we know a
candidate set Ncand, and C∗ is a subset of Ncand with |C∗| = Θ(|Ncand|). Now we can sample
nodes from C∗: if we uniformly sample Θ(1) nodes from Ncand, each sample hits C∗ with
constant probability, and our sample set has size Θ(1), hitting Θ(1) nodes from C∗. By
enumerating all possible subsets of the sampled set, we obtain a sample for C∗, and by a
standard concentration bound, we have a good estimation for Marginal(C∗, v).

One last problem remains. Since we no longer obtain Marginal(C∗, v) exactly, we rely on
an estimated Marginal(C∗, v), meaning we may make some errors in selecting C∗: we might
miss some vertices in C∗ and add others incorrectly. If we make too many such errors, our
final set will differ significantly from C∗. The key observation is that as long as C∗ and C̃∗

(the approximated cluster) do not differ too much, our estimate for C∗ remains reasonable.
To leverage this, we split Ncand into many small chunks. The estimation error in each round
is bounded by the size of each chunk. After processing one chunk, we update our sample
vertices to match the nodes we already found. One might argue that we no longer obtain C∗

exactly, which is true due to errors in each chunk. To bound the error affecting cost(C∗)−

∑v∈C∗ w(v), we will use new sample sets based on previous choices. As long as there is some
slackness in cost(C∗)−∑v∈C∗ w(v), we can still obtain a final cluster with a reasonably small
ratio.

Achieving Nearly Linear Time. We have to address two problems in order to find the
partial clustering F in nearly linear time. First, we cannot afford to compute all the clusters
Cr, one for each vertex r ∈ V. Second, we cannot afford to update each cluster Cr as soon as it
loses one vertex v ∈ Cr. To solve the first problem, we will sample a subset of vertices U ⊆ V
such that U is not too large and we can compute a cluster Cr for each vertex r ∈ U. Moreover,
with high probability, we will hit every cluster C ∈ OPT with a vertex, U ∩ C 6= ∅. Because
of this, there will still be a cluster among {Cr}r∈U that achieves the ratio R. To address the
second problem, we will update a cluster Cr only if it lost a constant fraction of its weight.
If a cluster Cr did not lose this constant fraction, the ratio did not change by too much. We
show that a cluster Cr has to lose at least a constant fraction of vertices in order to lose a
constant fraction of weight. We can charge the cost of updating the cluster Cr to the number
of vertices the cluster Cr loses.

Achieving Sublinear Time. To achieve a sublinear-time algorithm, we must accelerate the
process of finding a small-ratio cluster. The bottleneck is the estimation of the cost for a
given cluster. In general, this estimation is impossible in the sublinear-time model. Our key
insight is that if the cost is small, the cluster should have been split at the beginning. Thus, in
the remaining graph, only clusters with large costs persist, allowing us to estimate the cost
efficiently.

MPC Algorithm. To parallelize the algorithm, the main bottleneck is that we need to find
a set of small-ratio clusters instead of identifying them one by one. We can select multiple
nodes and run the small-ratio cluster-finding algorithm simultaneously. However, their can-

7

didate sets may overlap, so we remove nodes that appear in multiple candidate sets. As long
as we use a sufficiently small constant probability to select nodes, we ensure a large enough
candidate set, allowing each round to produce a sufficiently large set of small-ratio clusters.

2 Preclustering

We first introduce some more necessary notation. Define d+(v) as the degree of vertex v
with respect to +edges in G. For any subset C ⊆ V, let d+(v, C) and d−(v, C) denote the
number of +edges and−edges from v to C, respectively, connecting v to vertices in C. When
the context is clear, we omit the + symbol, so d(v) and d(v, C) mean d+(v) and d+(v, C),
respectively.

2.1 Computational Models.

We consider two computational models in this paper: the sublinear model and the MPC
model.

The Sublinear model. In the sublinear model, the algorithm can query the following in-
formation in O(1) time:

• Degree queries: What is the degree of vertex v?

• Neighbor queries: What is the i-th neighbor of v ∈ V for i ≤ d+(v)?

• Edge queries: Is uv ∈ E+?

One can think of this model as storing an adjacency list and an adjacency matrix of +edges
for G. The matrix allows us to check whether uv ∈ E+ in O(1) time.

The MPC model. In the MPC model, the set of edges is distributed across a set of machines,
and computation proceeds in synchronous rounds. During each round, each machine first
receives messages from other machines, then performs computations based on this infor-
mation and its own allocated memory, and finally sends messages to other machines to be
received at the start of the next round. Each machine has limited local memory, restricting
the total number of messages it can receive or send in a round. The efficiency of the algo-
rithm is measured by the number of rounds, the memory used by each machine, the total
memory used by all machines.

In this paper, we consider the MPC model in the strictly sublinear regime: Each machine
has O(nδ) local memory, where n is the input size and δ > 0 is a constant that can be made
arbitrarily small. Under this model, we assume the input received by each machine has size
O(nδ).

2.2 Preclustering

Our results crucially depend on the usage of the following preclustering subroutine. Intu-
itively, preclustering is a preprocessing step that will identify almost-cliques that should be
together and prohibit all pairs that are impossible to place in the same cluster. There will be
some remaining pairs for which we cannot decide whether or not they should be clustered
together or split apart. A major advantage of this procedure is that the number of uncertain
pairs can be bounded by the optimal solution. More precisely, we use the definition of a
preclustered instance from [CLLN23], which is also applied in [CLP+24].

8

Definition 4 (Preclustering). Given a Correlation Clustering instance (V, E+ ⊎ E−), a preclus-
tered instance is defined by a pair (K, Eadm). Here, K is a family of disjoint subsets of V (not
necessarily a partition) Each set K ∈ K has |K| ≥ 2 and is called a (non-singleton) atom. We use
VK :=

⋃
K∈K K to denote the set of all vertices in non-singleton atoms. A vertex in V \ K is called a

singleton atom.
Eadm ⊆ (V

2) is the set of admissible edges (sometimes called admissible pairs), which are defined
to be pairs of vertices (u, v) ∈ Eadm with at least one of u and v not in VK. A pair of vertices in a
same K ∈ K is called an atomic edge. A pair that is neither an atomic nor an admissible edge is called
a non-admissible edge.

For a vertex u, let dadm(u) denote the number of vertices v ∈ V such that (u, v) is an
admissible pair. Note that admissible, atomic, and non-admissible edges can each be either
+edges or −edges. Let Nadm(v) to be the set of vertices u such that (u, v) ∈ Eadm. We use
K(v) to represent the set K ∈ K that contains v; to make the notation more general, when v
is a singleton atom, K(v) = {v}.

We also need the definition of ε-similar preclustered instance and ε-similar cluster to
bound the value of dadm(v) for each node v ∈ V.

Definition 5 (ε-similar Preclustering). Given a Correlation Clustering instance (V, E+ ⊎ E−), let
(K, Eadm) be a preclustered instance for G, and let ε > 0 be some parameter. We say (K, Eadm) is
an ε-similar preclustering if

• for any v ∈ V, we have dadm(v) ≤ 2ε−3d(v),

• for any uv ∈ Eadm, we have d(u) ≤ 2ε−1d(v) and the number of common neighbors that are
degree similar to u and v is at least ε ·min{d(u), d(v)}, where a pair ww̃ is degree similar if
εd(w) ≤ d(w̃) ≤ d(w)/ε,

• for every atom K ∈ K, for every vertex v ∈ K, we have that v is adjacent to at least a (1−
O(ε))-fraction of the vertices in K and has at most O(ε|K|) neighbors not in K.

Definition 6 (ε-large Cluster). Given a preclustered instance (K, Eadm) for some Correlation Clus-
tering instance (V, E+ ⊎ E−), a set C ⊂ V is called ε-large with respect to (K, Eadm) if

• C does not break any atomic edge,

• C does not contain any non-admissible edge, and

• for any vertex v in C, if |C| > 1, then |C| ≥ εd(v).

Moreover, a clustering scheme C is called ε-large with respect to (K, Eadm) if all clusters C ∈ C
are ε-large clusters with respect to (K, Eadm).

The next theorem is stated in [CLP+24]. The construction follows the framework of As-
sadi and Wang [AW22, CLM+21, CLLN23].

Theorem 7 (Preclustering Procedures [CLP+24]). For a Correlation Clustering instance (V, E+⊎
E−) with optimal value cost(OPT) (which is not known to us), and for any sufficiently small ε > 0,
there are algorithms that produce an ε-similar preclustered instance (K, Eadm) that admits an ε-
large clustering scheme C∗(K,Eadm)

such that

1. cost(C∗(K,Eadm)
) ≤ (1 + ε)cost(OPT),

2. and |Eadm| ≤ O
(
ε−12cost(OPT)

)
.

9

n the various models, the respective procedure has the following attributes.

• (MPC model) The algorithm takes O(1) rounds succeeds with probability at least 1 − 1/n
and requires O(nδ) memory per machine. Moreover, the algorithm uses a total memory of
O(m log n), where m is the number of the + edges.

• (Sublinear model)In time O(n log n) one can compute the partition K and a data structure
such that with success probability at least 1− 1/n2, for any pair of vertices, the data structure
can answer in O(log n) time whether the pair is in Eadm or not. Moreover, the data structure
can list all vertices admissible to v in O(d(v) log2 n) time.

Assumptions. We will use OPT to denote an optimal clustering for the respective Corre-
lation Clustering input instance. We assume that OPT is an ε-large clustering and satisfies
|Eadm| ≤ O

(
ε−12cost(OPT)

)
because of Theorem 7.

3 Multiplicative Weights Update Framework

In this section, we prove the following: there exists an MWU algorithm that, in a constant
number of rounds, finds a solution to the cluster LP that is feasible and has a cost of at most
(1 +O(ε))cost(OPT).

The framework is provided in Algorithm 1. To solve cluster LP, we first run the preclus-
tering subroutine, which provides some structure to the graph. Then, for each non-singleton
atom of the preclustering, if the cost of isolating this atom is zero, it means that this atom
is a clique with no outgoing edges, and we will simply make it a cluster. Next, we pre-
process cluster LP by adding a fixed value to the objective and reformulating it as a cov-
ering LP, so that our final LP has certain desirable properties. We will discuss the details
of covering cluster LP (Line 3) and how to convert our solution back (Line 5) in Subsec-
tion 3.1. We use the MWU algorithm to solve the covering cluster LP. The description of the
MWU algorithm (Lines 3-4) is given in Subsection 3.2.

3.1 Converting cluster LP to covering cluster LP

In order to run a multiplicative weights algorithm to solve the cluster LP, we first transform
it into a covering LP. We make two key changes to the cluster LP. First, for each set S ⊆ V,
we will add ∑v∈S dcross(v) to the cost function.

cover(S) := cost(S) + dcross(S),

where dcross(v) is twice the cost attributable to vertex v if we choose to make K(v) a cluster.
If v is a singleton atom, then dcross(v) = d(v)− 1 (because of the self-loop vv). If v is an atom,
then

dcross(v) =
2 · cost(K(v))

|K(v)|
=

1

|K(v)| ∑
u∈K(v)

(d(u) + |K(v)| − 2d(u, K(v))) . (5)

The new objective function will be

cover(z) := ∑
S⊆V

cover(S) · zS.

Secondly, instead of an equality constraint, we relax the constraint to an inequality. Using
the new objective function, we can rewrite the cluster LP as a covering cluster LP.

10

Algorithm 1 Solving cluster LP

1: Input: Graph G
2: Output: a feasible solution to cluster LP satisfying Theorem 1
3: Find a preclustering G via Theorem 7; let (K, Eadm) be the preclustered instance.
4: V ′ ← V
5: for all atoms K ∈ K such that if dcross(K) = 0 do

6: make K a cluster and V ′ ← V ′ \ K
7: end for

8: Solve covering cluster LP using MWU Algorithm 2 on G[V ′] to within (1+O(ε13)) of the
optimum solution.

9: Let {zS}S be the solution.
10: Compute a solution {z̃S}S to the cluster LP using Lemma 11.
11: return {z̃S}S.

min cover(z) s.t. (covering cluster LP)

∑
S∋u

zS ≥ 1 ∀u ∈ V (6)

zS ≥ 0, ∀S ⊆ VS 6= ∅. (7)

Note that the cross degrees dcross(v) can be computed in time Õ(m) by accessing each
edge and checking if it belongs to the same atom. This is sufficient if we aim for nearly linear
time.

One may ask whether this modification changes the solution in terms of the approxima-
tion algorithm. Let Ecross be the set of disagreement edges if we isolate all singleton and non-
singleton atoms as the final clusters (i.e., 2|Ecross| = ∑v∈V dcross(v)). If Ecross is unbounded,
we are unable to obtain any guarantee for cluster LP when solving covering cluster LP ap-
proximately. Fortunately, we have the following lemma to help us bound the increase in the
objective when adding dcross to the cost.

Lemma 8. For any non-singleton atom K ∈ K,

dcross(K) = 2 · cost(K) = Ω(ε3dadm(K)).

Moreover,

dcross(V) = ∑
v∈V

dcross(v) = O

(
1

ε12

)
cost(OPT).

Proof. We first show the upper bound on ∑v∈V dcross(v). Each edge counted by ∑v∈V dcross(v)
is either admissible or contributes to the cost of OPT. To finish the upper bound, remember
that |Eadm| = O(ε−12cost(OPT)) by Theorem 7.

Then, we will prove the lower bound on dcross(K). Consider a vertex v ∈ K and an
admissible edge (v, u). If uv is a +edge, then dcross(K) already covers it, so we only need to
consider −edges.

Let A(v) be the set of all vertices that are connected to v by an admissible −edge. Let u be
one such neighbor in A(v). By Definition 5, v and u are degree similar and must share at least
ε ·min{d(v), d(u)} ≥ ε2d(v) +neighbors, which are degree similar to both u and v. Recall
that a pair ww̃ is degree similar if εd(w) ≤ d(w̃) ≤ d(w)/ε. We will distinguish between two
cases.

11

Let A1(v) ⊆ A(v) be the set of vertices u ∈ A(v) such that at least half of the degree-
similar +neighbors of u and v are not in K. Note that v ∈ K, has at most d(v) − d(v, K)

degree similar +neighbors outside K. Each u ∈ A1(v) has to be adjacent to at least ε2

2 d(v) of
these vertices outside of K which have degree at most d(v)/ε. Therefore, we have at most

(d(v)− d(v, K)) · d(v)/ε

ε2d(v)/2
≤ 2ε−3(d(v)− d(v, K))

vertices in A1(v). Thus, we can bound ∑v∈K |A1(v)| by 2ε−3 ∑v∈K(d(v)− d(v, K)) ≤ 4ε−3cost(K) ≤
4ε−3dcross(K).

Let A2(v) ⊆ A(v) be the set of vertices u ∈ A(v) such that that at least half of the degree-

similar +neighbors of u and v are in K. Each u ∈ A2(v) must connect to at least ε2

2 d(v)
vertices in K, so we have at most

dcross(K)

ε2d(v)/2
≤

4dcross(K)

ε2|K|

vertices that are in A2(v). Thus, we can bound ∑v∈K |A1(v)| by |K| · 4dcross(K)
ε2|K|

= 4ε−2dcross(K).

Combining the two cases, we find that the −admissible neighbors of K are at most

∑v∈K |A(v)| = O(ε−3dcross(K)).

We say that a set of vertices S ⊆ V does not split atoms if K(v) ⊆ S for all v ∈ S. Adding
dcross is useful for us because the new objective function cover(·) remains monotone as long
as the involved sets do not split atoms.

Lemma 9. Let U, W ⊆ V such that neither U nor W splits an atom. If U ⊂ W then, cover(U) <
cover(W).

Proof. We need to show:

cost(U) + dcross(U) < cost(W) + dcross(W) = cost(W) + dcross(U) + dcross(W \U). (8)

So we want to show:
cost(U) < cost(W) + dcross(W \U), (9)

which is true since the−edges in U also belong to W and +edges contributing to cost(U) but
not cost(W) are at most those in E+(U, W \U), whose contribution to cost(U) is |E+(U, W \
U)|/2 < dcross(W \U).

Using the above observation, we can show that an optimal solution of the covering cluster LP
is feasible for the cluster LP as long as it does not split atoms.

Lemma 10. Let z be an optimal solution to covering cluster LP where each set S in the support of z
does not split atoms. Then z satisfies all constraints with equality.

Proof. Assume for contradiction that there exists an atom K(v) that is not tight, ∑S⊇K(v) zS >

1. Let W ⊆ V be such that zW > 0. Let U = W \ K(v). We modify z by decreasing zW and
increasing zU . Let a = (∑S:K(v)⊆S zS)− 1, and let b = min{zW , a}. We define a new vector z̃.
Let z̃U = zU + b and let z̃W = zW − b. For all other S such that S 6= W, U, let z̃S = zS.

We obtain a contradiction by showing that z̃ remains feasible but has a decreased objec-
tive value. The only constraints affected by the change are those corresponding to vertices
in W. For a vertex u ∈ U = W \ K(v),

∑
S∋u

z̃S = z̃W + z̃U + ∑
S∋u

S 6=W,U

zS = (zW − b) + (b + zU) + ∑
S∋u

S 6=W,U

zS = ∑
S∋u

zS ≥ 1.

12

For the atom K(v), we have

∑
S⊇K(v)

z̃S = z̃W + ∑
S⊇K(v)

S 6=W

zS = zW − b + ∑
S∋v

S 6=W

zS ≥ 1.

The last inequality holds since b ≤ a. To finish the proof, we have to show that the objective
value has decreased. In other words, we want to show the following quantity is positive.

cover(W) · (zW − z̃W) + cover(U) · (zU − z̃U) = cover(W) · b + cover(U) · (−b).

To finish the proof, remember that cover(·) is monotone and U ⊆ W does not split atoms.
The lemma follows from Lemma 9.

We can show a more general version of Lemma 10. In particular, we can transform a
suitable solution of the covering cluster LP into a solution to the cluster LP that satisfies the
additional condition in Theorem 1, which stipulates that all values in the support are lower
bounded by a small constant.

Lemma 11. Let ε > 0 be a small enough constant, γ = O(ε13) and c = ⌈ 1
γ⌉. Given a constant

TMW ∈ N and a solution z to the covering cluster LP where,

• zS ≥
1

TMW
for each S ∈ supp(z),

• all S ∈ supp(z) do not split atoms,

• for each vertex v the number of sets S ∈ supp(z) with v ∈ S is at most TMW.

We can find a solution z̃ to the cluster LP where z̃S ≥
1

cTMW
for all S ∈ supp(z) and cover(z̃) ≤

(1 + γ)cover(z) and the solution z̃ can be found in time O(n).

Proof. If z is a solution to the covering cluster LP, we can assume that zS ≤ 1 for all S ∈ V.
Otherwise, we can set zS = 1 only decreasing the objective. We start by rounding each

coordinate zS to a multiple of 1
cTMW

. In particular, set z
(1)
S to k

cTMW
where k ∈ N such that

k−1
cTMW

≤ zS ≤
k

cTMW
. Since we do not decrease the value of any coordinate, z(1) remains

feasible. Furthermore, the objective increases by at most a γ factor. Indeed, for any set
S ⊆ V,

z
(1)
S − zS ≤

1

cTMW
≤

γ

TMW
≤ γzS.

The second inequality holds since c ≥ 1
γ and the last inequality follows from zS ≥

1
TMW

. Next,

scale the variable z(1) and the constraints by cTMW. Note that by the above, we have that

z
(1)
S =

k
(1)
S

cTMW
for some k

(1)
S ∈ N. After scaling we have variables {k

(1)
S }S⊆V and constraints,

∑S∋v k
(1)
S ≥ cTMW. We can transform k(1) to a scaled up solution of the cluster LP similar to

the proof of Lemma 10. Pick an atom K(v) that is not tight, ∑S⊇K(v) k
(1)
S > cTMW. Let W be a

set with k
(1)
W > 0 and K(v) ⊆W. Let U = W \ {K(v)}. We modify k(1) by decreasing k

(1)
W and

increasing k
(1)
U . Let a = (∑S:K(v)⊆S k

(1)
S)− cTMW, and let b = min{k

(1)
W , a}. We define a new

vector k(2). Let k
(2)
U = b + k

(1)
U and let k

(2)
W = k

(1)
W − b. For all other S such that S 6= W, U, let

k
(2)
S = k

(1)
S . We will show that k(2) remains feasible while the objective value decreases. The

only constraints affected by the change are those corresponding to sets containing vertices in
W. For a vertex u ∈ U = W \ {K(v)},

∑
S∋u

k
(2)
S = k

(2)
W + k

(2)
U + ∑

S∋u
S 6=W,U

k
(2)
S = (k

(1)
W − b) + (b + k

(1)
U) + ∑

S∋u
S 6=W,U

k
(1)
S = ∑

S∋u

k
(1)
S ≥ cTMW.

13

For the atom K(v), we have

∑
S⊇K(v)

k
(2)
S = k

(2)
W + ∑

S⊇K(v)
S 6=W

k
(2)
S = k

(1)
W − b + ∑

S∋K(v)
S 6=W

k
(1)
S ≥ cTMW.

The last inequality holds since b ≤ a. To finish the proof, we have to show that the objective
value has decreased. In other words, we want to show the following quantity is positive.

cover(W) · (k
(1)
W − k

(2)
W) + cover(U) · (k

(1)
U − k

(2)
U) = cover(W) · b + cover(U) · (−b).

Observe that U ⊂ W does not split atoms. Thus, the objective decreases by Lemma 9. We can
repeat this process until z(2) = k(2)/(cTMW) is feasible for the cluster LP. This process termi-

nates after O(n) iterations, which follows from the fact that in each iteration ∑v∈V ∑S∋v k
(2)
S

decreases by at least one. To see this, observe that

∑
v∈V

∑
S∋v

k
(2)
S = ∑

S
∑
v∈S

k
(2)
S = ∑

S

|S| k
(2)
S .

This last sum decreases by at least one, since we have “shifted” weight from W to a smaller
set U. Moreover, by the third property of z and the assumption that zS ≤ 1 for all S ⊆ V, we

have that ∑S∋v k
(2)
S ≤ cT2

MW = O(1).

Throughout the following sections, we will fix the parameter γ = O(ε13) since we want
to obtain a (1 + γ)-approximate algorithm for covering cluster LP. Assume z is a (1 + γ)-
approximately feasible solution for covering cluster LP, let z̃ be the solution we apply Lemma 11
to obtain a feasible solution for cluster LP. Observe that we have cover(z̃) = cost(z̃) +
dcross(V). Thus,

cost(z̃) = cover(z̃)− dcross(V) ≤ cover(z)− dcross(V)

≤ (1 + γ)cover(OPT)− dcross(V)

≤ (1 + γ)cost(OPT) + (1 + γ)dcross(V)− dcross(V)

≤ (1 + 2ε)cost(OPT).

The last inequality holds because dcross(V) = O(ε−12cost(OPT)). In the following section,
we present the MWU algorithm to solve covering cluster LP within a (1+O(γ))-approximate
ratio.

3.2 The MWU Algorithm

In this section, we show that a constant number of rounds of the MWU Algorithm suffices to
compute a (1+O(γ))-approximate solution to the covering cluster LP. The MWU algorithm
is given in Algorithm 2.

Overview of Algorithm 2. Algorithm 2 solves the covering cluster LP within a (1+ γ) fac-
tor of the optimum. Algorithm 2 maintains a weight wv for each vertex. During each step
t = 1, . . . TMW, we scale the vertex constraints by the normalized vertex weights and aggre-
gate the scaled constraints into a single constraint. We can find a solution to the now sim-
plified optimization problem by Lemma 15, which we will prove in Section 4. The weights
are then updated depending on the margin by which we violate or satisfy the correspond-
ing vertex constraint. The final solution for the covering cluster LP is obtained by taking
the average of the solutions to the simplified optimization problems solved at each round.

14

Algorithm 2 MWU algorithm for the covering cluster LP

1: Initialize the weights w
(1)
v = dcross(v) for each vertex v ∈ V.

2: for t = 1, . . . , TMW do

3: Normalize the weights p(t) = w(t)

∑v w
(t)
v

.

4: Aggregate all constraints into single constraint: ∑S p(t)(S) · zS = ∑v p
(t)
v (∑S:v∈S zS) ≥

1.
5: Find the point z(t) ∈ [0, 1/γ]2

V

from Lemma 15 that,

• satisfies the single constraint ∑S p(t)(S) · z
(t)
S ≥ 1,

• has objective value cover(z(t)) ≤ (1 + 5γ) cover(OPT),

• does not split atoms (i.e., if z
(t)
S > 0 then K(v) ⊆ S for all vertices v ∈ S), and

• has disjoint support (i.e., if z
(t)
S , z

(t)
T > 0 for two distinct S, T ⊆ V, then S ∩ T =

∅).

6: The cost of a constraint corresponds to the margin by which it is satisfied or violated,

m
(t)
v = ∑S:v∈S z

(t)
S − 1.

7: Update the weights w
(t+1)
v = w

(t)
v e−γ3m

(t)
v .

8: end for

9: Let ẑ be the average 1
TMW

∑
TMW
t=1 z(t).

10: for each v with ∑S⊇K(v) ẑS ≤ 1− 2γ do

11: Set the atom entry ẑK(v) to 1.
12: end for

13: z⋆ ← ẑ
1−2γ .

14: return z⋆.

In order to ensure feasibility, we need to increase the values of sets corresponding to atoms
containing insufficiently covered vertices. Finally, when all elements are almost covered (to
an extent 1− 2γ), we can scale up the value by a small amount to ensure sufficient coverage
of all vertices. The key step in the analysis is showing that there were few insufficiently cov-
ered vertices and we do not need to increase the values of too many sets corresponding to
their atoms.

Lemma 12. Let ε > 0 be a small enough constant and γ = O(ε13). After TMW = log(1/γ)
γ4

rounds, Algorithm 2 returns a solution z to the covering cluster LP with objective cover(z) ≤
(1 +O(γ)) cover(OPT).

Proof. First, we will prove that z is feasible for the covering cluster LP. Note that at the end of
the for loop on Line 10, we have that ∑S∋v ẑS ≥ 1− 2γ for each vertex v. Feasibility follows
since we scale by 1/(1− 2γ). Next, we will prove the bound on the objective of z. Consider
the potential

Φ(t) = ∑
v∈V

w
(t)
v .

The starting potential is

Φ(1) = ∑
v∈V

dcross(v) = dcross(V).

15

Because of the way we update the weights, the potential at the end of the execution is

Φ(TMW+1) = ∑
v∈V

w
(1)
v · exp

(
−γ3 ∑

t≤TMW

m
(t)
v

)
.

Claim 13. [AHK12] We can relate the potential at the start of the execution and at the end as follows.

Φ(TMW+1) ≤ Φ(1) · exp

(
γ4TMW − γ3 ∑

t≤TMW

〈p(t), m(t)〉

)
.

Proof. Again, by our update rule in Line 7,

Φ(t+1) = ∑
v∈V

w
(t+1)
v = ∑

v∈V

w
(t)
v · exp(−γ3m

(t)
v).

Remember that 0 ≤ z
(t)
S ≤

1
γ for all S ⊆ V. Moreover, the support of z(t) consists of disjoint

sets. This implies that m
(t)
v ∈ [−1, 1

γ − 1] for all vertices v and steps t.

∑
v∈V

w
(t)
v · exp(−γ3m

(t)
v) ≤ ∑

v∈V

w
(t)
v (1− γ3m

(t)
v + (γ3m

(t)
v)2)

≤ ∑
v∈V

w
(t)
v (1− γ3m

(t)
v + γ4)

= ∑
v∈V

w
(t)
v (1 + γ4)− ∑

v∈V

w
(t)
v γ3m

(t)
v

= Φ(t)(1 + γ4)− ∑
v∈V

Φ(t)p
(t)
v γ3m

(t)
v

= Φ(t)
(

1 + γ4 − γ3〈p(t), m(t)〉
)

≤ Φ(t) exp
(

γ4 − γ3〈p(t), m(t)〉
)

.

The first inequality follows from the fact that ex ≤ (1 + x + x2) for x ∈ [−1, 1].

Claim 14. Let U be the set of vertices that are uncovered by ẑ (i.e., U = {v ∈ V | ∑S∋v ẑS ≤
1− 2γ}). Then,

∑
v∈U

dcross(v) ≤ 2γ dcross(V).

Proof. Remember that

Φ(TMW+1) = ∑
v∈V

w
(1)
v · exp(−γ3 ∑

t≤TMW

m
(t)
v).

Fix a vertex u ∈ U. Since u is uncovered by ẑ, we have

TMW · 2γ ≤ TMW ·

(
1− ∑

S∋u

ẑS

)
= ∑

t≤TMW

(
1− ∑

S∋u

z
(t)
S

)
= − ∑

t≤TMW

m
(t)
u .

Using this, we can lower bound the potential,

Φ(TMW+1) ≥ ∑
v∈U

w
(1)
v · exp(2γ4TMW).

16

Together with the upper bound from Claim 13,

∑
v∈U

w
(1)
v · exp(2γ4TMW) ≤ Φ(TMW+1) ≤ Φ(1) · exp

(
γ4TMW − γ3 ∑

t≤TMW

〈p(t), m(t)〉

)
.

Observe that that 〈p(t), m(t)〉 will be non-negative since the points z(t) satisfy the single con-
straint ∑S p(t)(S) · zS ≥ 1. Indeed,

〈p(t), m(t)〉 = ∑
v∈V

p
(t)
v m

(t)
v = ∑

v∈V

p
(t)
v

(
∑
S∋v

zS − 1

)
= ∑

S

p(t)(S) · zS − 1.

We can conclude that,

∑
v∈U

w
(1)
v · exp(2γ4TMW) ≤ Φ(1) · exp

(
γ4TMW − γ3 ∑

t≤TMW

〈p(t), m(t)〉

)
≤ ∑

v∈V

w
(1)
v · exp(γ4TMW).

Rearranging,

∑
v∈U

dcross(v) = ∑
v∈U

w
(1)
v ≤ ∑

v∈V

w
(1)
v · exp((γ4 − 2γ4)TMW) = γ · ∑

v∈V

w
(1)
v = 2γ · dcross(V).

The second equality holds by the choice of TMW = log (1/γ)
γ4 .

Next, we will bound the objective value of z⋆. By the second property of Lemma 15, we
have cover(z(t)) ≤ (1 + 5γ) cover(OPT) for each t ≤ TMW. Since cover is a linear function,

this upper bound also holds for the average 1
TMW

∑
TMW
t=1 z(t). At the end of Algorithm 2, we

cover all uncovered atoms U = {v ∈ V | ∑S∋v ẑS ≤ 1− 2γ}. When we set a coordinate ẑK

to 1, the cover objective value increases by at most 3/2 · dcross(K). We have cost(K) = 1/2 ·
dcross(K). The additional dcross(K) is the term added to cost(K) for the covering cluster LP.
Recall that each z(t) does not split atoms. Hence, if v ∈ U then K(v) ⊆ U. By Claim 14, the
cost increases by at most,

∑
v∈U

dcross(v) ≤ 2γ · dcross(V) ≤ 2γ · cover(OPT).

Thus, the objective of z can be bounded by,

cover(z) ≤
1 + 7γ

1− 2γ
cover(OPT) ≤ (1 + 10γ)cover(OPT).

4 Finding a Partial Clustering with Small Ratio in Polynomial Time

In this section we will show how to find the point z(t) in Line 5 of the MWU Algorithm 2.

Lemma 15. Given vertex weights pv > 0 for all v ∈ V, we can construct a point z ∈ [0, 1/γ]2
|V|

that,

1. satisfies the single constraint ∑S p(S) · zS ≥ 1,

2. has objective cover(z) ≤ (1 + 5γ) cover(OPT),

17

Algorithm 3 Algorithm to find the family F

1: Let R be the guess for cover(OPT) such that R ∈ [cover(OPT), (1 + γ)cover(OPT)).
2: p̂← p,F ← ∅, V̂ ← V
3: for all v ∈ V do

4: Find a small ratio cluster Cv where K(v) ⊆ Cv ⊆ Nadm(v) with vertex weights p̂ > 0
and target ratio (1 + 3γ)R (Lemma 18).

5: end for

6: while p(F) ≤ γ do

7: Choose C with the smallest ratio
cover(C)

p̂(C) among clusters {Cv}v∈V̂ .

8: Add C to F , set p̂v to 0 for all v ∈ C and remove vertices in C from V̂.
9: for all v ∈ V̂ do

10: {Update Cv if some node in Cv is added to F}
11: if Cv ∩ C 6= ∅ then

12: Find a new small ratio cluster Cv with vertex weights p̂ > 0 and target ratio (1 +
3γ)R (Lemma 18).

13: end if

14: end for
15: end while

16: return F

3. does not split atoms (i.e., if zS > 0 then K(v) ⊆ S for all vertices v ∈ S),

4. has disjoint support (i.e., if zS, zT > 0 for two distinct S, T ⊆ V, then S ∩ T = ∅).

Throughout this section, we assume we are given a distribution p over vertices. We have
pv > 0 for each vertex v ∈ V and ∑v∈V pv = 1. For a set S ⊆ V of vertices, we write
p(S) = ∑v∈S pv. Similarly, we will abuse notation and write p(F) = ∑S∈F p(S) for a family
F ⊆ 2V of subsets of vertices.

In order to construct the point z, we will find a partial clustering F = {S1, S2, ..., Sl | Si ⊆

V} that achieves a small ratio
cover(F)

p(F) . Each vertex v is contained in at most one set S ∈ F .

Moreover, F is a partial clustering, meaning that F might not cover all the vertices in V.
However, we require that F covers at least a constant fraction of the probability mass of the
vertices (i.e., p(F) ≥ γ). We show that Algorithm 3 will find such a partial clustering.

Description of Algorithm 3. Algorithm 3 relies on Lemma 18, which we will prove in
Section 5. Lemma 18 states that given a vertex r and the optimal value R ≈ cover(OPT), we

can efficiently find a single cluster Cr ∋ r with a small ratio
cover(Cr)

p(Cr)
≤ R if there exists such

a cluster and in particular, if the cluster C ∈ OPT that contains r achieves the ratio R. There
has to exist a cluster C ∈ OPT that achieves the ratio R since p is a probability distribution.
Thus, we can find a cluster Cr for each vertex r ∈ V and add the cluster with the smallest
ratio to the partial clustering F ; this ratio will be at most R. If the cluster S we find that way
has small vertex probability mass p(S) < γ, we have to repeat this process. Note that when
we remove the vertices in S, we only remove p(S) < γ of probability mass. We argue that in
this case, there will exist a cluster in OPT with ratio at most (1 + 2γ)cover(OPT) and we can
find a cluster disjoint from S that achieves ratio (1 + 2γ)cover(OPT). Hence, we can repeat
until we cover constant probability mass with F . For now, the algorithm will have a runtime
of Õ(n4). In Section 6, we will show how we can modify Algorithm 3 to achieve a nearly
linear runtime.

18

Lemma 16. Given vertex weights pv > 0 for all v ∈ V, Algorithm 3 finds a familyF = {S1, S2, ..., Sl |
Si ⊆ V} such that,

1. for any distinct S, T ∈ F , S ∩ T = ∅,

2.
cover(F)

p(F)
≤ (1 + 5γ)cover(OPT),

3. p(F) is at least γ,

4. no S ∈ F splits an atom (i.e., K(v) ⊆ S, for all vertices v ∈ S).

Proof. First, observe that Property 3. holds by the condition of the while loop. Property 4.
holds since the all small ratio clusters {Cv}v∈V do not split atoms by Lemma 18. Next, we
observe that Property 1. holds: the family F consists of disjoint sets. Observe that after we
added a cluster C ⊆ V to F we set the weight p̂v to 0 for all v ∈ C. Note that if the weight p̂v

is set to 0 it remains 0 throughout the execution of the algorithm. Moreover, when we add
a cluster C to F , it contains only vertices such that p̂v > 0. Thus, when we add C to F we
have p̂v > 0 for all v ∈ C and p̂v = 0 for all v ∈ S, S ∈ F .

Now we address Property 2. Based on our assumption, we have R such that cover(OPT) ≤

R < (1 + γ)cover(OPT). It remains to prove the bound on the ratio cover(F)
p(F)

. Let C ∈ OPT

and v ∈ C such that if K is a non-singleton atom in C then K = K(v). (If C contains no such
atom, then v can be any vertex in C.) As long as,

cover(C) + γ2dadm(C)

p̂(C)
≤ (1 + 3γ)R, (10)

we maintain the following invariant:

cover(Cv)

p̂(Cv)
≤ (1 + 3γ)R. (11)

Before starting the while loop on Line 6, we have by Lemma 18,

cover(Cv)

p(Cv)
≤ (1 + 3γ)R.

since C satisfies the requirements of Lemma 18 for the vertex v and ratio (1 + 3γ)R by as-
sumption. Consider one iteration of the while loop on Line 6. If we did not remove a vertex
from Cv then the invariant remains true. Again, if Cv was updated, we have by Lemma 18,

cover(Cv)

p̂(Cv)
≤ (1 + 3γ)R.

Let C⋆ be the cluster in the optimal clustering OPT with the best ratio cover(C⋆)+γ2dadm(C⋆)
p̂(C⋆)

.

By the condition of the while loop on Line 6, p̂(V) = p(V)− p(F) ≥ 1− γ. Note that,

(1 + 3γ)R ≥
1 + γ

1− γ
R ≥

(1 + γ)cover(OPT)

p̂(V)
≥

cover(OPT) + γ2|Eadm|

p̂(V)

=
∑C∈OPT(cover(C) + γ2dadm(C))

∑C∈OPT p̂(C)
≥

cover(C⋆) + γ2dadm(C⋆)

p̂(C⋆)
.

19

For the second inequality, we use that γ cover(OPT) ≥ γ cost(OPT) ≥ γ2|Eadm| because of
the preclustering (Theorem 7). The last inequality holds by the definition of C⋆. Let v ∈ C⋆

such that if K is a non-singleton atom in C⋆ then K = K(v). By (11),

cover(Cv)

p̂(Cv)
≤ (1 + 3γ)R.

Since we choose Cr as the cluster with the best ratio among clusters {Cu}u∈V ,

cover(Cr)

p̂(Cr)
≤

cover(Cv)

p̂(Cv)
≤ (1 + 3γ)R.

We can conclude that,

cover(F)

p(F)
=

∑S∈F cover(S)

∑S∈F p(S)
≤ (1 + 3γ)R ≤ (1 + 5γ)cover(OPT).

We can use the family F to construct the point z(t) that we will use in one iteration of the
MWU algorithm. From Lemma 16 we can readily derive Lemma 15.

Lemma 15. Given vertex weights pv > 0 for all v ∈ V, we can construct a point z ∈ [0, 1/γ]2
|V|

that,

1. satisfies the single constraint ∑S p(S) · zS ≥ 1,

2. has objective cover(z) ≤ (1 + 5γ) cover(OPT),

3. does not split atoms (i.e., if zS > 0 then K(v) ⊆ S for all vertices v ∈ S),

4. has disjoint support (i.e., if zS, zT > 0 for two distinct S, T ⊆ V, then S ∩ T = ∅).

Proof. For each S ∈ F , set zS = 1
p(F) ≥ 1. First, we prove properties 3. and 4. Observe that

the support of z is equal to F which contains only disjoint sets. Similarly, z does not split
atoms since F does not. Property 1. is satisfied since,

∑
S

p(S) · zS = ∑
S∈F

p(S)

p(F)
= 1.

To finish the proof, we can bound the objective as follows,

cover(z) = ∑
S∈F

cover(S)zS =
cover(F)

p(F)
≤ (1 + 5γ)cover(OPT).

Lemma 17. The runtime of Algorithm 3 is Õ(n4).

Proof. Finding the small ratio cluster Cv for a single vertex v takes time Õ(d2(v)). So overall,
we need time Õ(n3) to find all {Cv}v∈V . There are at most n iterations of the while loop
on Line 6 since we set p̂v = 0 for at least one vertex v. This can happen at most n times.
Indeed, once a vertex has weight p̂v = 0, the weight will remain 0. During one iteration of
the while loop on Line 6, we might have to update all {Cv}v∈V . Again, this takes time at
most Õ(n3).

20

5 Finding One Small Ratio Cluster

In this section, we show how to find a small ratio cluster Cr, which is a key subroutine in
Algorithm 3. We define the candidate set of r, Ncand(r), to be the vertices that could possibly
belong to the small ratio cluster Cr.

Ncand(r) =

{
Nadm(r) \VK if r is a singleton atom,

K(r) ∪
(⋂

u∈K(r) Nadm(u)
)

if r belongs to a non-singleton atom.

Intuitively, if r belongs to some non-singleton atom, then we only need to consider all admis-
sible neighbors plus the nodes that are in the same atom. If r is a singleton atom, we do not
need to consider any neighboring non-singleton atoms; we only need to consider admissible
neighbors that are singleton atoms. Notice that the definition of Ncand is not symmetric (i.e.,
it might be the case that u ∈ Ncand(v), but v /∈ Ncand(u)).

In this section, we want to show the following Lemma.

Lemma 18. Suppose we are given a graph G = (V, E), vertex weights p̂, a target ratio R, a vertex r
and the set of vertices Nadm(r).

(i) Assume there exists a cluster C be an ε-large cluster with K(r) ⊆ C ⊆ Ncand(r) such that
cover(C) + γ2dadm(C) ≤ R · p̂(C).

(ii) Assume that cover({v}) > R · p̂({v}) for all v ∈ C.

Then, with high probability, in time Õ(d2(r)), we can find a cluster Cr ⊆ Ncand(r) such that,

cover(Cr) ≤ R · p̂(Cr).

Moreover, Cr does not split atoms and contains exactly one non-singleton atom K(r) ⊆ Cr iff K(r) is
a non-singleton atom.

Lemma 18 may return a cluster Cr that contains some nodes with p̂v = 0. In such cases,
we can simply remove these nodes, as the monotonicity of cover ensures that removing
nodes with p̂ = 0 will only decrease the ratio.

The algorithm is parameterized by γ, η, ε. Recall that γ = O(ε13) is a small enough con-
stant and η = Ω(γ−2ε−8) = Ω(ε−34) is a sufficiently large constant. We also assume that
|Ncand(r)| = Ω(η2), otherwise, we can enumerate all possible subsets of Ncand(r), which
takes O(2poly(1/ε)) time.

5.1 Overview of the Algorithm

In this section, we aim to solve the following optimization problem: Given a preclustered
Correlation Clustering instance and vertex weights w, the goal is to find a set T of vertices
such that

cost(T) ≤ ∑
v∈T

w(v).

Setting w(v) := R · p(v)− dcross(v), if we can find a set T such that

cost(T) ≤ ∑
v∈T

(
Rp(v)− dcross(v)

)
≤ ∑

v∈T

Rp(v)− ∑
v∈T

dcross(v),

21

then T is a small ratio cluster, since

cover(T) = cost(T) + ∑
v∈T

dcross(v) ≤ R ∑
v∈T

p(v) = R · p(T).

Define D(v) := Ncand(v) \ K(v) for any v ∈ V, and ∆(T) := cost(T) − w(T) for any
T ⊆ V. As is the case of Nadm(v) (i.e., see Definition 5), we can also bound the size of
Ncand(v), which we do by the following lemma.

Lemma 19. For any r ∈ V, if v ∈ Ncand(r), then |Ncand(r)| = O(ε−4d(v)).

Proof. We have by definition of Ncand that |Ncand(r)| ≤ |K(r)|+ |Nadm(r)| = O(ε−3d(r)). The
last equality is true since the preclustering is ε-similar. Note that for any vertex v ∈ Ncand(r)
the edge (r, v) is admissible. Thus, d(r) ≤ ε−1d(v) and |Ncand(r)| = O(ε−4d(v))|.

For a set of vertices T and a vertex v, we want to compare the cost of including v in T to
the cost of not including v in T, define the marginal value v with respect to T as,

Marginal(T, v) = cost(T ∪ {v}) − cost(T \ {v})

= d−(v, T) +
1

2
d+(v, V \ (T ∪ {v})) −

1

2
d+(v, T \ {v})

= |T| − d+(v, T) +
1

2
(d+(v)− 1)− d+(v, T \ {v})

=
d+(v)− 1

2
+ |T| − 2d+(v, T) + 1(v ∈ T).

where 1 is the indicator function for the event v ∈ T. Recall that we assume uu is also a
+edge in G. In the above calculation, the indicator variable corresponding to whether v
belongs to T is used to adjust for the fact that the calculation differs slightly depending on
whether v is in T or not. Since we do not know whether or not v ∈ T, we need this extra
term.

One of the most important properties for function Marginal is the following.

Claim 20. For any non-empty set T and T′ and any vertex v, we have

Marginal(T, v)−Marginal(T′, v) ≤ 2|T ⊕ T′|

where ⊕ denotes the symmetric difference of two sets.

Proof. Using the definition of Marginal, we have

Marginal(T, v)−Marginal(T′, v) = |T ∪ {v}| − |T′ ∪ {v}| − 2(d+(v, T)− d+(v, T′))

≤ |T \ T′| − |T′ \ T|+ 1− 2(d+(v, T \ T′)− d+(v, T′ \ T))

≤ |T \ T′| − |T′ \ T|+ 1 + 2d+(v, T′ \ T))

≤ |T ⊕ T′|+ 1 ≤ 2|T ⊕ T′|.

Claim 20 implies that we can estimate the value Marginal(T, v) by the value Marginal(T′, v)
if T′ is almost the same as T. In each round, we try to decide whether or not a node v should
be in T using Marginal(T, v). However, we do not know T, so we will instead sample a small
set S from T and estimate Marginal(T, v). To do this estimation, given a small sample set S,
an integer guess t for the size of T and a vertex v, define

EstMarg(S, t, v) :=
d+(v)− 1

2
+ t− 2

d(v, S)

|S|
t.

We will sample a constant number of nodes, so with constant probability, we can ensure
EstMarg is close to Marginal.

22

Description of Algorithms 4 and 5 . Given the definitions of Marginal(T, v) and EstMarg(S, t, v),
we can now describe Algorithm 4 and Algorithm 5. Conceptually, we begin by guessing
C∗ ⊂ Ncand(r), where C∗ is defined to be the cluster for which cost(C∗) − w(C∗) is min-
imized. Due to the optimality of C∗, adding a node to C∗ or removing a node from C∗

will increase this value, which implies that Marginal(C∗, v) − w(v) ≤ 0 for all v ∈ C∗ and
Marginal(C∗, v) − w(v) ≥ 0 for all v 6∈ C∗. Based on this observation, we should add any
node v if and only if Marginal(C∗, v)− w(v) ≤ 0.

The algorithm does not know C∗, so to compute the value of Marginal(C∗, v) for any
node v, Algorithm 4 attempts to sample enough nodes from C∗. We will later show that
|C∗| = Ω(γ2ε−8|Ncand(r)|), ensuring that we always obtain some sampled vertices from C∗.

In this process, instead of sampling once, we sample η different sets Ai. This is because
we need new sampled nodes each time we add vertices to our final set T̂. The algorithm
also tries to guess the size of C∗. Since C∗ is an ε-large cluster, we know the size of C∗ will
be within [εd+(r), |Ncand(r)|]. We do not need the exact size, so we will enumerate possible
sizes with different granularities, choosing values from the following set:

L(r) =

{(
1 +

1

η

)j

∈ [εd+(r), ε−4d+(r)] | j is an integer

}
.

Algorithm 4 GenerateClusterBySampling(G, Nadm(r), w, r, R)

1: Input: The graph G, K(r), Nadm(r), Ncand(r), w, r, ratio R.
2: Output: A small ratio cluster T̂ if r satisfies Assumption (i) from Lemma 18.
3: Repeat the following steps O(log n) times.
4: for i from 1 to η do

5: Uniformly sample Θ(η4γ−2ε−8) vertices from Ncand(r) with replacement
6: Let the sample set be Ai. {Ai may contain some element multiple times.}
7: end for

8: D(r)← Ncand(r) \ K(r)
9: for every (S1, S2, ..., Sη) ⊂ (A1, A2, ..., Aη) such that |Si| ≤ η, where i ∈ [η] do

10: for every (t̃1, t̃2, ..., t̃η) ∈ (L(r), L(r), ...L(r)), where t̃j ∈ L(r) for j ∈ [η] do

11: T ← GenerateCluster(r, D(r), S1, . . . , Sη, t̃1, . . . , t̃η)
12: if cost(T) ≤ w(T) then
13: return T
14: end if

15: end for

16: end for

17: return ∅

After the sampling step, we proceed to add vertices to T̂. We must be careful regarding
C∗ because, once we add vertices, we may introduce errors. Using the same sampled nodes
repeatedly could make the estimation of Marginal inaccurate. To address this, we divide
Ncand(r) into η ”chunks”, each of size |Ncand(r)|/η. For each chunk, we use the estimated
Marginal to decide whether to add a node to T̂. Once we finish processing a chunk, we
update our sampled set to align with the choices we have already made. This process ensures
that we return a good cluster with constant probability. By repeating it O(log n) times, we
obtain our final small ratio cluster.

23

Algorithm 5 GenerateCluster(r, D(r), S1, . . . , Sη, t̃1, . . . , t̃η)

1: T ← K(r), T̂1 ← K(r)
2: Let D1

r , . . . , D
η
r be an arbitrary partition of the vertices of D(r) into equal-size parts

3: for all i = 1, . . . , η do

4: for all v ∈ Di
r do

5: if EstMarg(Si, t̃i, v)+6η−1|Ncand(r)| ≤ w(v) then
6: T ← T ∪ {v}
7: end if

8: end for

9: T̂i+1 ← T
10: end for

Let C∗ be the cluster such that K(r) ⊆ C∗ ⊆ Ncand(r) and ∆(C∗) = cost(C∗)− w(C∗) is
minimized. For C, which exists by Assumption (i) in Lemma 18, we have ∆(C∗) ≤ ∆(C) ≤
−γ2dadm(C). To analyze the algorithm, recall T̂i is the set of vertices in set T̂ at the beginning
of the i-th iteration of the for loop on Line 3 of Algorithm 5. Notice that T̂i−1 ⊆ T̂i. We define

C∗i = T̂i ∪ argmin



cost(T̂i ∪ B)− w(T̂i ∪ B)

∣∣∣ B ⊆
η⋃

j=i

D
j
r



 .

Assume now that Si is a uniform sample of the cluster C∗i . Let ti = |C
∗
i | be the size of |C∗i |,

and assume that t̃i ∈ [ti, (1 + 1
η)ti]. Our main lemma regarding Algorithm 5 is given as

follows.

Lemma 21. Suppose we are given a graph G = (V, E), vertex weights w and vertex r.

• Assume there exists a cluster C that is ε-large cluster with K(r) ⊆ C ⊆ Ncand(r) such that
cost(C) + γ2dadm(C) ≤ w(C).

Let C∗i be the set defined above and Si be a uniform sample with size η0 = Ω(η3) from C∗i , t̃i ∈
[ti, (1 +

1
η)ti] is the guess for the size of C∗i . Then with probability 1− 2η exp(−2η),

GenerateCluster(r, D(r), S1, . . . , Sη , t̃1, . . . , t̃η) produces a cluster T̂ such that cost(T̂) ≤ w(T̂).

Proof. We will later show the following claim,

Claim 22. With probability at least 1− 2 exp(−2η),

∆(C∗i+1)− ∆(C∗i) = O(η−2ε−8dadm(C)).

Assuming the claim is true, a union bound implies that with probability at least 1 −
2η exp(−2η), this claim holds for all i = 1, . . . , η. Lemma 21 follows by observing that T̂ =
C∗η+1 and C∗1 = C∗. Recall, by definition, ∆(C∗i) = cost(C∗i) − w(C∗i). For any C∗i , where

i ∈ [η], we have

∆(C∗i) = ∆(C∗1) +
i−1

∑
j=1

(∆(C∗j+1)− ∆(C∗j))

≤ ∆(C∗) + η ·O(η−2ε−8dadm(C))

≤ ∆(C∗) +
γ2

2
dadm(C)

≤ −
γ2

2
dadm(C).

24

The next-to-last inequality follows from the assumption η = Ω(γ−2ε−8).

Claim 23. Either |C⋆
i | = si = Ω(γ2ε8|Ncand(r)|) for all i ∈ [η] or there exists a vertex u ∈

Ncand(r) such that cost(u) ≤ w(u).

Proof. Note that for any i ∈ [η], we have,

∆(C∗i) ≤ −
γ2

2
dadm(C),

where C is the ε-large cluster such that K(r) ⊆ C ⊆ Ncand(r). By Lemma 19, |Ncand(r)| =
O(ε−3d(r)). If r is in a non-singleton atom K(r) ⊆ C⋆

i , then |C⋆
i | ≥ |K(r)| ≥ (1−O(ε))d(r) ≥

Ω(ε3|Ncand(r)|). |K(r)| ≥ (1− ε)d(r) is due to preclustering, every non-singleton atom has
at most O(ε) fraction +neighbors outside of K(r).

Otherwise, all vertices in Ncand(r) are in singleton-atoms. Assume that |C⋆
i | ≤ γ2ε8|Ncand(r)| =

O(γ2ε5d(r)). In this case,

−
γ2

2
dadm(C) ≥ ∆(C⋆

i) = cost(C⋆
i)− ∑

v∈C⋆
i

w(v) ≥ ∑
v∈C⋆

i

d(v)− |C⋆
i |

2 − ∑
v∈C⋆

i

w(v).

The last inequality uses cost(C′) + |C′|2 ≥ ∑v∈C′ d(v), which holds for any cluster C′.
(The right side counts the +edges incident on C′. Either such an edge leaves C′ and con-
tributes to the cost(C′) or it is inside C′. There are at most |C′|2/2 edges inside C′.) Since
C ⊆ Ncand(r), C only contains vertices in singleton atoms. Since C is ε-large, all edges in C

are admissible. Thus, dadm(C) ≥ 1
2 |C|

2 ≥ ε2

2 d2(r). Hence, |C⋆
i |

2 − γ2

2 dadm(C) ≤ ε10γ6d2(r)−
ε2γ2

4 d2(r) ≤ 0. In particular,

∑
v∈C⋆

i

d(v)− ∑
v∈C⋆

i

w(v) ≤ |C⋆
i | −

γ2

2
dadm(C) ≤ 0.

There has to exist a vertex v ∈ C⋆
i such that d(v)−w(v) ≤ 0.

Now, we are able to show the main lemma 18 of this section.

Proof of Lemma 18. Lemma 21 outputs T̂ such that cost(T̂) ≤ w(T̂). However, we still need
to satisfy the input conditions for Lemma 21.

This is provided by Claim 23, noting that each |C∗i | has size Ω(γ2ε8|Ncand(r)|). In Algo-
rithm 4, we uniformly sample Θ(η4γ−2ε−8) vertices from Ncand(r). The expected number
of nodes we hit in C∗i is Θ(η4). With probability at least 1− exp(−η), we obtain η0 = η3

sampled nodes, allowing the algorithm to enumerate all subsets of Ai; at least one run
will contain all sampled nodes from C∗i . By a union bound, with probability at least 1−
η exp(−η), a call to GenerateCluster will satisfy Lemma 21. Once we make the correct call
to GenerateCluster, with probability at least 1 − 2η exp(−2η), GenerateCluster outputs a
correct answer. The high-probability guarantee comes from the fact that Algorithm 4 repeats
the whole process log n times.

To argue about the runtime for finding a small ratio cluster, we use the statements in
Theorem 7 about deciding admissibility. We will compute Ncand(r) as follows. We can find
Nadm(r) in time Õ(d(r)). Then we can iterate through all vertices in Nadm(r) and check if
they are in Ncand(r). This takes time Õ(d2(r)). Since η and ε are constants, the runtime of
GenerateClusterBySampling, Algorithm 4, is log(n) times the runtime of GenerateCluster,
Algorithm 5. Here, we compute EstMarg(S, t, v) for all v ∈ Ncand for a constant number
of constant sized sets S. This takes at most Õ(d(r)) since we only need to iterate over the
neighbors of vertices in S. We can compute cost(T) in time O(|T| · d(r)) = O(d2(r)). Overall,
we spend at most Õ(d2(r)).

25

... Di−1
r Di

r Di+1
r

..

T̂i T̂i+1 \ T̂i

C∗i \ T̂i

D(r)

Figure 1: Illustration of the sets T̂i, C∗i , and Qi. The rectangle represents D(r), divided into
η parts. The red region denotes T̂i, containing all vertices already added to T̂. The set C∗i in-
cludes both the red and blue regions. In Di+1

r , the algorithm attempts to include as many ver-
tices as possible in C∗i ; the yellow region represents the newly added vertices in T̂. Claim 22
states that the yellow and blue regions have significant overlap.

5.2 Bounding ∆(C∗i+1)− ∆(C∗i)

In this section, we will prove Claim 22.

Proof of Claim 22. Let

Qi := T̂i+1 ∪


C∗i ∩

η⋃

j=i+1

D
j
r


 .

Recall that

C∗i = T̂i ∪ argmin



cost(T̂i ∪ B)− w(T̂i ∪ B)

∣∣∣ B ⊆
η⋃

j=i

Di
r



 .

By the optimality of C∗i+1, we know that ∆(C∗i+1) ≤ ∆(Qi). To bound ∆(C∗i+1)− ∆(C∗i), it is
sufficient to prove that

∆(Qi)− ∆(C∗i) = O(η−2ε−8dadm(C)).

Note that

∆(Qi)− ∆(C∗i) = cost(Qi)−w(Qi)− cost(C∗i) + w(C∗i)

= cost(Qi)− cost(C∗i)−w(Qi \ C∗i) + w(C∗i \Qi)

Intuitively, removing one vertex from Qi will incur Marginal(Qi, v) to cost(Qi)− cost(C∗i),
so we can use Marginal value to bound cost(Qi)− cost(C∗i). More precisely, consider the pro-
cess that we change Qi to C∗i . we first remove nodes from Qi one by one, at the end, we get the
set Qi ∩C∗i , then we try to add nodes to this set and make the final set C∗i , cost(Qi)− cost(C∗i)
is bounded by the marginal in each step. Let’s consider some moment in this process, we
first consider the removal process. assume that at step j, our set is Qi,j, then we choose an

26

arbitrary element from v ∈ Qi,j \ C∗i , and remove v from Qi,j, the new set is Qi,j+1. At the
beginning, we have Qi,1 = Qi. By Claim 20, we know that

Marginal(Qi,j, v)−Marginal(C∗i , v) ≤ 2|C∗i ⊕ Qi,j| ≤ 2|C∗i ⊕Qi|

so the cost difference to change Qi,j to Qi,j+1 is at most

cost(Qi,j)− cost(Qi,j+1) = Marginal(Qi,j, v) ≤ Marginal(C∗i , v) + 2|Qi ⊕ C∗i |.

Similarly, in the process of changing C∗i ∪Qi to C∗i , the cost change in each step is bounded
by Marginal(C∗i , v)− 2|Qi ⊕ C∗i |. So, in order to change Qi to C∗i , the total marginal changes

cost(Qi)− cost(C∗i) ≤ ∑
v∈Qi\C

∗
i

(Marginal(C∗i , v) + 2|Qi ⊕ C∗i |)− ∑
v∈C∗i \Qi

(Marginal(C∗i , v)− 2|C∗i ⊕Qi|)

≤ ∑
v∈Qi\C

∗
i

Marginal(C∗i , v)− ∑
v∈C∗i \Qi

Marginal(C∗i , v) + 2|Qi ⊕ C∗i |
2

∆(Qi)− ∆(C∗i) is bounded by

∆(Qi)− ∆(C∗i) = cost(Qi)− cost(C∗i)− w(Qi \ C∗i) + w(C∗i \ Qi)

≤ ∑
v∈Qi\C

∗
i

(Marginal(C∗i , v)−w(v))− ∑
v∈C∗i \Qi

(Marginal(C∗i , v)−w(v)) + 2|Qi ⊕ C∗i |
2.

Now we will bound these three parts one by one.

Bound for |Qi ⊕ C∗i |
2. We start by bounding |Qi ⊕ C∗i |

2. The only difference between C∗i
and Qi is the vertices in Di+1

r , the algorithm replace the elements in C∗i ∩ Di+1
r with T̂i+1 \ T̂i.

So

|Qi ⊕ C∗i |
2 ≤ |Di+1

r |
2 ≤ η−2|D(r)|2.

Bound for ∑v∈Qi\C
∗
i
(Marginal(C∗i , v)− w(v)). By definition of C∗i , for any vertex v ∈ Di+1

r \

C∗i , adding v to C∗i does not yield a strictly better cluster. In particular, for any v ∈ Di+1
r \ C∗i ,

we have Marginal(C∗i , v) − w(v) ≥ 0. The difficulty of the proof is that Marginal(C∗i , v) −
w(v) could be very large. Let

ℓ(v) =
Marginal(C∗i , v)−w(v)

η−1|Ncand(r)|

be the ratio of contribution, so if we add v to Qi, v contributes ℓ(v)η−1|Ncand(r)| to ∆(Qi)−
∆(C∗i).

We need to bound the estimation error between EstMarg and Marginal. We provide the
following lemma regarding this bound, and its proof is given at the end of this section.

Lemma 24. Let η0 = η3 and ℓ ≥ 1. Consider a vertex v and an arbitrary set of vertices T of size t =
Ω(η). Let S be a set consisting of η0 random samples (with repetition) from T. Let t̃ ∈ [t, (1 + 1

η)t]

Then, with probability at least 1− 2 exp
(
−2ℓ2η

)
. we have the following inequality holds:

Marginal(T, v)−
(4 + ℓ)t

η
≤ EstMarg(S, t̃, v) ≤ Marginal(T, v) +

(4 + ℓ)t

η
(12)

27

According to Lemma 24, with probability at least 1− 2 exp
(
−2(ℓ(v)2 + 1)2η

)
, we have

EstMarg(Si, t̃i, v)−Marginal(C∗, v) ≥ −(4+ 2(
ℓ(v)

2
+ 1))η−1|C∗i | ≥ −(6+ ℓ(v))η−1|Ncand(r)|,

and

EstMarg(Si, t̃i, v) + 6η−1|Ncand(r)| ≥ Marginal(C∗, v)− ℓη−1|Ncand(r)| ≥ w(v),

and Algorithm 5 will not add v to T̂. Therefore v ∈ Qi with probability at most 2 exp
(
−2(ℓ(v)2 + 1)2η

)
,

and the expected contribution of v to ∑v∈Qi\C
∗
i
(Marginal(C∗i , v)−w(v)) is at most

2 exp

(
−2(

ℓ(v)

2
+ 1)2η

)
· (Marginal(C∗i , v)−w(v))

≤ 2ℓ(v) exp

(
−2(

ℓ(v)

2
+ 1)2η

)
η−1|Ncand(r)|

≤ 2 exp(−2η)η−1|Ncand(r)|

and

E[∑
v∈Qi\C

∗
i

(Marginal(C⋆
i , v)−w(v))] ≤ 2 exp(−2η)η−1|Ncand(r)|η

−1|D(r)|.

By Markov inequality, with probability at most exp(−2η), we have

∑
v∈Qi\C

∗
i

(Marginal(C⋆
i , v)−w(v)) ≥ 2η−2|Ncand(r)||D(r)|.

Bound for ∑v∈C∗i \Qi
(Marginal(C⋆

i , v)− w(v)). If v ∈ C∗i \Qi, we know that Marginal(C∗i , v)−

w(v) ≥ 0. We will distinguish two cases.

1. Marginal(C⋆
i , v)−w(v) ≤ −12η−1|Ncand(r)|

Again, we use the same strategy of bounding ∑v∈Qi\C
∗
i
(Marginal(C∗i , v)− w(v)). Let

ℓ(v) =
w(v)−Marginal(C∗i , v)

η−1|Ncand(r)|

be the ratio of contribution, so if we decide not to add v to Qi, v contributes ℓ(v)η−1|Ncand(r)|
to ∆(Qi) − ∆(C∗i). Note that ℓ(v) ≥ 12. According to Lemma 24, with probability at

least 1− 2 exp
(
−2(ℓ(v)2 − 5)2η

)
, we have

EstMarg(Si, t̃i, v)−Marginal(C∗, v) ≤ (4+ 2(
ℓ(v)

2
− 5))η−1|C∗i | ≤ (ℓ(v)− 6)η−1|Ncand(r)|.

and

EstMarg(Si, t̃i, v) + 6η−1|Ncand(r)| ≤ Marginal(C∗, v) + ℓη−1|Ncand(r)| ≤ w(v),

28

and Algorithm 5 will add v to T̂. Therefore v 6∈ Qi with probability at most 2 exp
(
−2(ℓ(v)2 − 5)2η

)
,

and the expected contribution of v to ∑v∈Qi\C
∗
i
(w(v)−Marginal(C∗i , v)) is at most

2 exp

(
−2(

ℓ(v)

2
− 5)2η

)
· (w(v)−Marginal(C∗i , v))

≤ 2ℓ(v) exp

(
−2(

ℓ(v)

2
− 5)2η

)
η−1|Ncand(r)|

≤ 24 exp(−2η)η−1|Ncand(r)|

and

E[∑
v∈Qi\C

∗
i

(w(v)−Marginal(C∗i , v))] ≤ 24 exp(−2η)η−1|Ncand(r)|η
−1|D(r)|.

By Markov inequality, with probability at most exp(−2η), we have

∑
v∈Qi\C

∗
i

(w(v)−Marginal(C∗i , v)) ≥ 24η−2|Ncand(r)|η
−1|D(r)|.

With probability at least 1− exp(−2η), we have

∑
v∈Qi\C

∗
i

(Marginal(C∗i , v)−w(v)) ≥ −24η−2|Ncand(r)|η
−1|D(r)|

2. Marginal(C⋆
i , v)−w(v) ≥ −12η−1|Ncand(r)|. Recall that C∗i \Qi ⊆ Di+1

r . We have,

∑
v∈Qi\C

∗
i

(Marginal(Qi, v)− w(v)) ≥ −12η−1|Ncand(r)| · |D
i+1
r | = −12η−1|Ncand(r)| · η

−1|D(r)|.

Now, we are ready to give the final bound on ∆(Qi) − ∆(C∗i). Using the bounds from the
three cases above and we have, with probability at least 1− 2 exp(−2η), we have

∆(Qi)− ∆(C∗i) ≤ ∑
v∈Qi\C

∗
i

(Marginal(Qi, v)−w(v))− ∑
v∈C∗i \Qi

(Marginal(C∗i , v)−w(v)) + |Qi ⊕ C∗i |
2

≤2η−2|Ncand| · |D(r)|+ 24η−2|Ncand| · |D(r)|+ 12η−2|Ncand| · |D(r)|+ 2η−2|D(r)|2

=O(η−2|Ncand| · |D(r)|)

We still have to bound |Ncand| · |D(r)|, which actually is the number of two hop candidates.
Fortunately, after preclustering, the number of two hop candidates |D(v)| · |Ncand(v)| can be
bounded by following lemma, which is also used in [CLP+24].

Lemma 25 (Lemma 34 of [CLP+24]). For any vertex r and any ε-large cluster C such that K(r) ⊆
C ⊆ Ncand(r), we have

|D(r)| · |Ncand(r)| = O(ε−8dadm(C)).

Using Lemma 25, we obtain the claimed bound,

∆(Qi)− ∆(C∗i) = O(η−2|Ncand| · |D(r)|) = O(η−2ε−8dadm(C)).

By the union bound, all bounds hold simultaneously with probability at least 1− 2 exp (−2η).

29

Proof of Lemma 24. Recall that t̃ is the guess for size of T.

Marginal(T, v) =
d+(v)− 1

2
+ |T| − 2d+(v, T) + 1(v ∈ T).

and

EstMarg(S, t̃, v) :=
d+(v)− 1

2
+ t̃− 2

d+(v, S)

|S|
t̃

Consider the i-th sampled node u in S, let Xi =
t

η0
· 1(uv ∈ E) be a random variable, so

Xi ∈ {0, t
η0
}.

E[
η0

∑
i=1

Xi] =
η0

|T|
·

t

η0
· d+(v, T) = d+(v, T).

By Hoeffding’s inequality, we have,

Pr[

∣∣∣∣∣
η0

∑
i=1

(Xi −E[Xi])

∣∣∣∣∣ ≥
ℓt

η
] ≤ 2 exp

(
−

2(ℓt/η)2

η0 · (t/η0)2

)
≤ 2 exp

(
−2ℓ2η

)
.

Now, consider the difference of Marginal and EstMarg, we have

|EstMarg(S, t̃, v)−Marginal(T, v) |

≤

∣∣∣∣t̃− 2
d+(v, S)

|S|
t̃− |T|+ 2d+(v, T)− 1(v ∈ T)

∣∣∣∣

≤ |t̃− |T||+ 2
d+(v, S)

|S|
|t̃− t|+ 2

∣∣∣∣∣
η0

∑
i=1

(Xi −E[Xi])

∣∣∣∣∣+ 1

≤
t

η
+

2t

η
+

2ℓt

η
+ 1

≤
(4 + 2ℓ)t

η
.

The last inequality is because t = Ω(η).

6 Refinements to Reach Nearly Linear Time

In this section, we present an algorithm to solve cluster LP in nearly linear time (i.e., Õ(m)),
where m is the number of +edges. In a later section, we will present a sublinear-time algo-
rithm. The main theorem regarding the nearly linear algorithm is stated as follows.

Theorem 26 (Nearly Linear Time cluster LP). Let ε > 0 be a sufficiently small constant and
let cost(OPT) be the cost of the optimum solution to the given Correlation Clustering instance.
Then there is a small δ = poly(ε) such that the following statement holds: One can output a
solution (zS)S⊆V to the cluster LP, described using a list of non-zero coordinates, with obj(x) ≤
(1 + ε)cost(OPT) in expectation such that each coordinate of z is either 0 or at least δ. The running
time to compute z is Õ(2poly(1/ε)m).

We need to address two problems when aiming for nearly linear time. First, we cannot
afford to compute all the clusters Cr, one for each vertex r ∈ V. Instead, we will sample a
subset of vertices U ⊆ V such that U is not too large and we can compute a cluster Cr for each

30

vertex r ∈ U. In particular, we will include each vertex v in U with probability log(n)/d(v).
Since we assume that the optimal solution is ε-large , we will hit every cluster C ∈ OPT with
a vertex (i.e., U ∩ C 6= ∅) with high probability. Because of this, there will still be a cluster
among {Cr}r∈U that achieves the ratio R.

Second, we cannot update a cluster Cr as soon as it loses one vertex. However, we can
wait until a cluster Cr has lost a constant fraction γ · p(Cr) of its probability mass before we
update it. If a cluster Cr did not lose this constant fraction, the ratio did not change by too
much. Moreover, we can show that if the probability distribution p is a distribution from the
MWU Algorithm 2, then Ncand(r) has to lose at least a constant fraction of vertices in order
for Cr to lose a constant fraction of probability mass. Thus, we only need to update a cluster
Cr at most a constant number of times.

Algorithm 6 (Nearly Linear) Algorithm to find the family F

1: Let R be the guess for cover(OPT) such that R ∈ [cover(OPT), (1 + γ)cover(OPT)).
2: p̂← p,F ← ∅

3: for t = 1, . . . , log(n)/ε2 do

4: Add each vertex v with probability 1
d(v)

to U.

5: end for

6: for all v ∈ V do

7: If cover(K(v))
p(K(v))

≤ (1 + 6γ) R, add K(v) to F and set p̂w = 0 for all w ∈ K(v).

8: If pv ≤
γdcross(v)
4dcross(V)

, set p̂w = 0 for all w ∈ K(v).

9: end for

10: for all u ∈ U do

11: Find a small ratio cluster Cu such that K(u) ⊆ Cu ⊆ Nadm(u) with vertex weights
p̂ > 0 and target ratio (1 + 3γ)R (Lemma 18).

12: end for

13: while p(F) ≤ γ do

14: Choose C with the smallest ratio cover(C)
p̂(C)

among clusters {Cv}v∈U .

15: Remove all w such that p̂w = 0 from C, add the new C to F .
16: Set p̂v to 0 for all v ∈ C.
17: for all v ∈ U do
18: if p̂(Cv) ≤ (1− γ)p(Cv) then

19: Find a new small ratio cluster Cv with vertex weights p̂ > 0 and target ratio (1 +
3γ)R (Lemma 18).

20: end if

21: end for

22: end while

23: return F

6.1 Approximate Ratio of Algorithm 6

Lemma 27. Given vertex weights pv > 0, Algorithm 6 finds a family F = {S1, S2, ..., Sl | Si ⊆ V}
such that,

1. for any distinct S, T ∈ F , S ∩ T = ∅,

2.
cover(F)

p(F)
≤ (1 + 8γ)cover(OPT),

3. p(F) is at least γ,

31

4. no S ∈ F splits an atom, i.e. K(v) ⊆ S for all vertices v ∈ S.

Proof. First, observe that Property 3. holds by the condition in the while loop. Property
2. holds since all small ratio clusters {Cv}v∈U do not split atoms. Next, we will prove the
family F consists of disjoint sets. Observe that after we added a cluster C ⊆ V to F we set
the weight p̂v to 0 for all v ∈ C. Note that if the weight p̂v is set to 0 it remains 0 throughout
the execution of the algorithm. Moreover, before we add a cluster C ⊆ V to F we remove all
vertices v ∈ C with weight pv = 0 from C. Thus, when we add C to F we have p̂v > 0 for
all v ∈ C and p̂v = 0 for all v ∈ S, S ∈ F . Assume that the guess R satisfies cover(OPT) ≤

R ≤ (1 + γ)cover(OPT). It remains to prove the bound on the ratio cover(F)
p(F)

. To do so, we

will make use of the following claim.

Claim 28. For each cluster C ∈ OPT with |C| ≥ 2, C ∩U 6= ∅ with high probability. Moreover, if
there exists a non-singleton atom K ⊆ C then K ∩U 6= ∅ with high probability.

Proof. We can assume that the optimal clustering is ε-large with respect to our preclustering.
Thus, for any non-singleton atom K we have |K| ≥ O(ε)d(v) for each v ∈ K. Otherwise, v
has more than O(ε|K|) neighbors outside of K. The probability that we don’t include a vertex
from K in U in one iteration is

∏
v∈K

(
1−

1

d(v)

)
≤ exp

(
− ∑

v∈K

1

d(v)

)
≤ exp (−O(ε)) .

Thus, after log(n)/ε2 rounds, we include a vertex from K in U with high probability. If
|C| > 1, then |C| ≥ εd(v). By the same arguments as above, we will include a vertex from C
in U with high probability. ♦

Let C ∈ OPT. By Claim 28, there exists a vertex v ∈ C∩U such that K = K(v) if K is a non-
singleton atom in C. Now, we are able to analyze the approximation ratio of Algorithm 6.
We first show the existence of a cluster that satisfies the conditions of Lemma 18.

Lemma 29. In the algorithm 6, if p(F) ≤ γ, then there always be a cluster C∗ ∈ OPT such that

cover(C⋆) + γ2dadm(C⋆)

p̂(C⋆)
≤ (1 + 3γ)R.

Proof. Let C⋆ be the cluster among clusters in OPT with the smallest ratio cover(C⋆)
p̂(C⋆)

. Notice

that the algorithm will set some p̂v to 0 without adding u to F , let

Small = {v ∈ p̂v is set to 0 at line 8 in Algorithm 6}

We have p(Small) ≤ ∑v∈V
γdcross(v)

16dcross(V) ≤ γ/4. By the condition in loop 13, we have p̂(V) =

p(V)− p(F) − p(Small) ≥ 1− γ− γ/4 ≥ 1− 1.5γ. Thus,

(1 + 3γ)R ≥
1 + γ

1− 1.5γ
R ≥

(1 + γ)cover(OPT)

p̂(V)
≥

cover(OPT) + γ2|Eadm|

p̂(V)

=
∑C∈OPT(cover(C) + γ2dadm(C))

∑C∈OPT p̂(C)
≥

cover(C⋆) + γ2dadm(C⋆)

p̂(C⋆)
.

For the second inequality, we use that γ cover(OPT) ≥ γ cost(OPT) ≥ γ2|Eadm| because of
the preclustering (Theorem 7). The last inequality holds by the definition of C⋆.

32

Based on Lemma 29, we know that if we use (1 + 3γ)R as the ratio and apply Lemma 18,
we can always find a cluster Cv with ratio at most (1 + 3γ)R. One issue remains: we might
set the p̂ value of some nodes in Cv to 0. This is captured by the following invariant.

Lemma 30. For any Cv added to F in Algorithm 6, we have

cover(Cv)

p̂(Cv)
≤ (1 + 5γ)R.

Proof. When Cv is created, we have

cover(Cv)

p̂(Cv)
=

cover(Cv)

p(Cv)
≤ (1 + 3γ)R.

Note that at this moment, Cv only contains nodes with p̂ values greater than 0. Later, the
algorithm may add other clusters to F and set some p̂ values to 0, which will increase the
ratio of Cv. However, whenever at least a γ-fraction of the p̂ value in Cv is decreased to 0, we
renew Cv. Thus, we always maintain the bound:

cover(Cv)

p̂(Cv)
≤

cover(Cv)

(1− γ)p(Cv)
≤

1 + 3γ

1− γ
R ≤ (1 + 5γ)R.

Now, we only need to show that whenever p(F) ≤ γ, there always exists a non-empty
cluster C among the clusters {Cv}v∈U that we can consider. We prove this by contradiction.

Assume that at some iteration of Line 13, we have p(F) ≤ γ and Cv = ∅ for all v ∈ U.
By Lemma 29, there exists a cluster C∗ such that

cover(C∗) + γ2dadm(C∗) ≤ (1 + 3γ)Rp̂(C∗).

By Claim 28, there exists a node u ∈ U such that u ∈ C∗. Moreover, if C∗ contains a non-
singleton atom, then u is in the non-singleton atom. Since p̂ is non-increasing, we can always
find a cluster Cu such that the ratio is at most (1 + 3γ)R.

Remember that we might add single vertices with ratio (1+ 6γ)R. We can conclude that,

cover(F)

p(F)
=

∑S∈F cover(S)

∑S∈F p(S)
≤

cover(Cv)

p̂(Cv)
≤ (1 + 6γ)R ≤ (1 + 8γ) cover(OPT)

6.2 Runtime of Algorithm 6

We now prove that Algorithm 6 runs in nearly linear time.

Lemma 31. For each vertex v, let pv be the normalized weight w
(t)
v during a round t = 1, . . . , T of

the MWU Algorithm 2 for T = − log(γ)
γ2 . Then, the expected runtime of Algorithm 6 is Õ(m).

Proof. We add each vertex to U with probability at most 1
d(v)

log(n). By Lemma 18, comput-

ing one Cu for u ∈ U takes time Õ(d2(u)). Computing all {Cu}u∈U takes expected time,

∑
v∈V

Õ(d2(v))

d(v)
log(n) = Õ(m).

33

We maintain a priority queue of the clusters {Cu}u∈U. We can pick the cluster C with the
best ratio and remove it from the queue in time log(n). If we update a Cu, we can insert it
into the queue in time log(n). When we set the weight of a vertex to zero we have to remove
this vertex from each cluster Cu. In the following, we will show that v is contained in at most
log(n) clusters Cu in expectation. Thus, this takes time at most log(n). Moreover, we set the
weight of a vertex to zero at most once.

Claim 32. With high probability, each vertex is contained in at most O(log(n)) clusters from
{Cu}u∈U .

Proof. If a vertex v is included in the cluster Cu, the v and u have to be connected by an
admissible edge. Thus the number of clusters Cu with v ∈ Cu is bounded by the cardinality
of |U ∩ Nadm(v)|. Since the preclustering is ε-similar , we have that |Nadm(v)| = dadm(v) ≤
2ε−3d(v) and d(u) ≥ 1

2 εd(v) for each vertex u ∈ Nadm(v). Thus, we have for the expectation,

E[|U ∩ Nadm(v)|] = ∑
u∈Nadm(v)

1

d(u)
log(n) ≤ 2ε−1 ∑

u∈Nadm(v)

1

d(v)
log(n) ≤ 4ε−4 log(n).

The high-probability argument follows from a standard Chernoff bound and the union bound.
♦

It is left to show that we don’t have to update the Cu’s too often. To do so, we first proof
that each Cu has size proportional to the degree d(u).

Claim 33. For any cluster Cu ∈ Ncand(u) such that cover(Cu)
p̂(Cu)

≤ (1 + 5γ)R, then

• either |Cu ∩ {v ∈ Cu | p̂v > 0}| ≥ γ3d(u),

• or cover({v})
pv

≤ (1 + 6γ)R for some v ∈ Cu.

Proof. Note that cover is monotonic, so we can always remove all vertices with p̂ = 0 at the
beginning and this will only decrease the ratio. We will show that if a cluster Cu has size
|Cu ∩ {v ∈ Cu | p̂v > 0}| ≤ γ3d(u) then there exists a vertex v ∈ Cu with

cover({v})

pv
≤ (1 + 6γ)R

Remember that the edge (u, v) is admissible for all v ∈ Cu. If Cu contains a non-singleton
atom K(u) ⊆ Cu, note that |K(u)| ≥ d(u)/2 ≥ |Cu|, this contradicts to K(v) ⊆ Cu. so we can
assume that Cu does not contain any non-singleton atom and

cover(Cu) ≥ ∑
v∈Cu

(
1

2
(d(v)− |Cu|) + dcross(v)

)

≥ ∑
v∈Cu

(
1

2
(d(v)− γ2d(v)) + dcross(v)

)

≥ (1− γ2) ∑
v∈Cu

cover({v}).

The second inequality holds since we assumed that |Cu| ≤ γ3d(u) ≤ γ3ε−1d(v) ≤ γ2d(v).
Here, we used that the preclustering is ε-similar and (u, v) is admissible. If Cu is considered
in the algorithm, then the ratio of Cu is bounded by (1+ 5γ)R. One can safely remove u from
U otherwise.

(1 + 5γ)R ≥
cover(Cu)

p̂(Cu)
≥ (1− γ2)

∑v∈Cu
cover({v})

∑v∈Cu
p̂v

.

34

However, than there has to exist a vertex v ∈ Cu that achieves the ratio

1 + 5γ

1− γ2
R ≤ (1 + 6γ)R

This vertex would have been added to F before {Cu}u∈U are computed. Then, p̂v = 0, a
contradiction. ♦

The next lemma will give us an upper and lower bound of p value each round, this can
help us bound the number of updates for Cu.

Lemma 34. Invariant: In Algorithm 2, for any t ∈ [1, TMW] and any node u ∈ V, we have

γdcross(u)

16dcross(V)
≤ p

(t)
u ≤

16dcross(u)

dcross(V)

Proof. We prove the statement by induction. The base case t = 1 holds automatically.
Now, assume that the inequality holds at round t. First, note that if a node u is not

added to F , then m
(t)
u = −1; otherwise, we have 1 ≤ m

(t)
u ≤ 1/γ. Therefore, the value w

(t)
u

will increase by at most e−γ3m
(t)
u = eγ3

≤ 2 if u is not added to F , and decrease by at most

e−γ2
≥ 1/2 if u is added to F . Consequently, we obtain:

p
(t)
u ≤ p

(t+1)
u ≤ 4p

(t)
u , if u is not added to F ,

and
p
(t)
u

4
≤ p

(t+1)
u ≤ p

(t)
u , if u is added to F .

It remains to show that: u is never added to F if p
(t)
u ≤

γdcross(u)
4dcross(V)

, and u is always added to

F if p
(t)
u ≥

4dcross(u)
dcross(V) . For the first argument, by Line 8, we always set p̂u = 0 if p

(t)
u ≤

γdcross(u)
4dcross(V) ,

and we never add a node with p̂u = 0.
The second argument is slightly more involved. A node u is added to F at Line 7. Note

that R ≥ cover(OPT) ≥ dcross(V). Whenever p
(t)
u ≥

4dcross(u)
dcross(V) , we have

cover(K(u))

p(K(u))
≤

dcross(K(u))

4|K(u)| · dcross(u)/dcross(V)

≤
|K(u)| · dcross(u)

4|K(u)| · dcross(u)/dcross(V)
≤

dcross(V)

2
≤ R.

Thus, we will add K(u) to F , which completes the proof.

Now, using Lemma 34, we can give a lower bound and upper bound of the p̂ value.

Lemma 35. Let Ncand(u) ⊆ K(u)∪
(⋃

w∈K(u) Nadm(w)
)

be the candidate set considered in Lemma 18,

and define D(u) = Ncand(u) \ K(u). If |D(u)| ≤ dadm(K(u))
|K(u)| , then for any v ∈ Ncand(u)

pv = Ω

(
γε4|D(u)|

dcross(V)

)
, pv = O

(
ε−1d(u)

dcross(V)

)

35

Proof. For any node v ∈ K(u), we have

pv = pu ≥
γdcross(u)

16dcross(V)
≥

γdcross(K(u))

16|K(u)|dcross(V)
= Ω

(
γε3dadm(K(u))

|K(u)|dcross(V)

)
= Ω

(
γε3|D(u)|

dcross(V)

)
.

The first inequality follows from Lemma 34, the second inequality is based on the defini-
tion of dcross(u), and the first equality follows from Lemma 8.

For any node v ∈ D(u), we have

pv ≥
γdcross(v)

16dcross(V)
≥

γd(v)

32dcross(V)
= Ω

(
γεd(w)

dcross(V)

)
(for some w ∈ K(u))

= Ω

(
γεdcross(w)

dcross(V)

)
= Ω

(
γεdcross(u)

dcross(V)

)
= Ω

(
γε4|D(u)|

dcross(V)

)
.

The first inequality follows from Lemma 34, the second inequality is based on the definition
of dcross(v). The first equality follows from ε-similar preclustering. Note that we do not
require the edge uv to be an admissible edge; instead, we only require that there exists some
node w such that vw is admissible. The second equality follows from ε-similar preclustering
and the definition of dcross(u).

Next, we focus on the upper bound. The upper bound for v ∈ K(u) holds based on the
definition of dcross(v). From Lemma 34, each node v ∈ D(u) satisfies

p̂v ≤
16dcross(v)

dcross(V)
= O

(
d(v)

dcross(V)

)
= O

(
ε−1d(w)

dcross(V)

)
= O

(
ε−1d(u)

dcross(V)

)
.

The first equality follows from the definition of dcross(v), the second equality follows from
the fact that there exists some w ∈ K(u) such that vw is admissible and ε-similar precluster-
ing, and the last equality holds due to ε-similar preclustering.

We remark that in the sublinear model, it is impossible to compute
⋂

v∈K(u) Nadm(v) ex-
actly. Therefore, we must relax the definition of Ncand in the sublinear model. That’s the

main reason that we only require |D(u)| ≤ dadm(K(u))
|K(u)|

in Lemma 35.

Now, we are able to argue that we do not need to update Cu too many times. By Lemma 18,
we know that for each u, we only consider nodes in Ncand(u) for inclusion in Cu.

Lemma 36. Consider Algorihtm 6, for each u ∈ U, Cu is updated at most O(γ−5ε−5) times.

Proof. Since all nodes in K(u) are always chosen simultaneously, at most one round is re-
quired to set the p̂ value of nodes in K(u) to zero. Our goal is to bound the number of
rounds needed to remove all nodes from D(u). To do this, we derive a lower bound on
p̂(Cu).

The first thing is the condition for Lemma 35. Note that we set

Ncand(u) = K(u) ∪


 ⋂

w∈K(u)

Nadm(w)




if u is not a singleton. The candidate set is the intersection of all admissible neighbors, so we
must have

|D(u)| ≤
dadm(K(u))

|K(u)|
.

36

so from Lemma 35, we know that p̂v = Ω
(

γε4|D(u)|
dcross(V)

)
. From Claim 33, we know that

|Cu| ≥ γ3d(u). To remove a γ-fraction of the p̂ value of Cu, we must remove a total weight
of at least

Ω

(
γ · γ3d(u) ·

γε4|D(u)|

dcross(V)

)
= Ω

(
γ5ε4d(u)|D(u)|

dcross(V)

)
.

On the other hand, from Lemma 35, we know that p̂v = O
(

ε−1d(u)
dcross(V)

)
. If we do not set the

p̂ value of nodes in K(u) to zero, we must set at least

Ω

(
γ5ε4d(u)|D(u)|/dcross(V)

ε−1d(u)/dcross(V)

)
= Ω(γ5ε5|D(u)|)

nodes from D(u) to p̂ = 0 to reduce γ fractional value of p̂(Cu). Therefore, after at most
O(γ−5ε−5) rounds, the algorithm will have set all nodes in D(u) to zero.

6.3 Wrap-Up: Proof of Nearly Linear Time Algorithm for cluster LP

We are now ready to prove Theorem 26.

Proof of Theorem 26. We can obtain the preclustering (K, Eadm) in time Õ(n) by Theorem 7. By
Lemma 12, we can obtain a solution z to the covering cluster LP after constant rounds TMW =
O(poly(1/ε)) of Algorithm 2 such that cover(z) ≤ (1 + O(γ)) cover(OPT). Moreover, zS is
at least 1

TMW
for each S ∈ supp(z) since each coordinate of the points z(t) is either 0 or at least

1. The solution z is simply the average of all the points z(t). Similar, the solution z does not
split atoms since each z(t) does not split atoms by Lemma 11. Furthermore, each vertex v
is contained in at most T sets S ∈ supp(z) since the solutions z(t) have disjoint support by
Lemma 11.

By Lemma 11, in time O(n), we can convert z into a solution z̃ to the cluster LP such that
cover(z̃) ≤ cover(z) and z̃S ≥

1
cTMW

for all S ∈ supp(z). Observe that for a solution z to the

cluster LP, we have cover(z) = cost(z) + dcross(V). Thus,

cost(z̃) ≤ cover(z̃)− dcross(V)

≤ (1 +O(γ))cover(z)− dcross(V)

≤ (1 +O(γ))cover(OPT)− dcross(V)

= (1 +O(γ))cost(OPT) +O(γ)dcross(V)

≤ (1 +O(γ))cost(OPT) +O(ε)cost(OPT)

≤ (1 +O(ε))cost(OPT).

Here, we used that dcross(V) = O(ε−12)cost(OPT) by Lemma 8. In each round of Algorithm
2, we have to construct the point z(t). To do so, we will find the family F from Lemma 27 in
expected time Õ(m) by Lemma 31.

7 Finding a Partial Clustering with Small Ratio in Sublinear Time

In order to achieve sublinear runtime, we will have to address the following problems.

1. First, it is not clear how to compute dcross(v) for vertices in non-singleton atoms. How-
ever, we can estimate dcross(v) in sublinear time for all vertices in atoms.

37

2. We need to implement the algorithm that finds one good ratio cluster, GenerateClus-
terBySampling (Algorithm 4) in time Õ(d(r)) instead of Õ(d2(r)). More specifically,

• We need to be able to find Ncand(r),

• We need to estimate the cost of the cluster T.

3. We need to determine the best solution z since we compute one for each guess R of the
optimal cost.

Now, we address each problem one by one.

7.1 Compute dcross(v)

Actually, it is impossible to compute dcross(v) in sublinear time if dcross(v) is very small.
Consider the following two scenarios, where we have two graphs:

• The first graph consists of two cliques, each containing n nodes.

• The second graph also consists of two cliques, but with a slight modification: we re-
move one random edge from each clique and then add two edges crossing the cliques,
connecting the vertices from which we removed edges.

Suppose we are given one of these two graphs with probability 1/2. If we could compute
dcross(v) for these graphs in sublinear time, we would be able to distinguish which graph
we were given. However, it is not difficult to show that distinguishing between these two
graphs requires Ω(n2) queries for any (randomized) algorithm. See [AW22] B.1 for similar
reduction.

The issue in the above scenario arises when dcross(v) is too small, making it impossible to
compute in sublinear time. To address this, whenever dcross(v) is too small, we set K(v) as
a cluster. For large dcross(v), instead of computing it exactly, we estimate dcross(v) within a
(1 + β) approximation, for any small enough constant β = O(ε3).

This is formally captured by the following lemma.

Lemma 37. Let β > 0 be a small enough constant. In time Õ(|K|), we can find, with high probability,
either an estimate d̂cross(K) such that

(1− β)dcross(K) ≤ d̂cross(K) ≤ (1 + β)dcross(K)

or a certificate that K is a cluster in OPT.

Proof. Note that dcross(K) = 2 · cost(K) = |E+(K, V \ K)|+ 2|E−(K)| by definition. We will
estimate both terms in the sum individually.

Claim 38. If |E+(K, V \ K)| ≥ β2|K|, then we can find an estimate X in time Õ(|K|) such that

|X − |E+(K, V \ K)|| ≤
β

4
· |E+(K, V \ K)|

with high probability.

Proof. We will sample s = 32β−4|K| log n edges incident on K uniformly at random. To sam-
ple one such edge we can sample a vertex proportional to his degree, then an edge adjacent to

38

the vertex uniformly at random and if the edge is inside K we will discard it with probability
1/2. Let mK be the number of edges incident on K. We set the estimate to be

X =
mK

s

s

∑
i=1

Xi,

where Xi is a random variable indicating whether the i-the edge leaves the atom K. Observe
that the estimator is unbiased,

E[X] =
mK

s

s

∑
i=1

E[Xi] =
mK

s

s

∑
i=1

|E+(K, V \ K)|

mK
= |E+(K, V \ K)|.

By our preclusetring, there are at most 1
2 |K|

2 edges leaving the atom K. Thus, mK ≤ |K|
2. By

Chernoff,

Pr

[∣∣∣∣
s

mK
X −

s

mK
|E+(K, V \ K)|

∣∣∣∣ ≥
β

4
·

s

mK
|E+(K, V \ K)|

]
≤ 2 exp

(
−

β2

16
·

s

mK
|E+(K, V \ K)|

)

= O

(
1

n2

)
.

The last inequality holds since mK ≤ |K|
2 and |E+(K, V \ K)| ≥ β2|K| by assumption. ♦

We can estimate E−(K) in a similar manner. The only difference is that we sample s =
32β−4|K| log n pairs uv and check whether uv ∈ E+.

Recall that in the sublinear model, we can determine whether uv ∈ E+ in O(1) time. The
following lemma states the result, and we omit the proof for brevity.

Claim 39. If |E−(K, V \ K)| ≥ β2|K|, then we can find an estimate Y in time Õ(|K|) such that

|Y − |E−(K)|| ≤
β

4
· |E−(K)|

with high probability.

To deal with the case where |E+(K, V \K)| is small, we will repeat the estimation process
log(n) times to obtain X(1), . . . , X(log n). The final estimate X will be the median of the repe-
titions X(1), . . . , X(log n). Now, if |E+(K, V \ K)| ≤ β2|K| then X(i) ≤ 3β2|K| with probability
at least 1/3 by Markov’s inequality. Thus, X ≤ 3β2|K| with high probability. We proceed
similar for Y. Our estimate for dcross(K) will be d̂cross(K) = X + 2Y.

Claim 40. If dcross(K) ≥ β|K|, the the estimate d̂cross(K) = X + 2Y satisfies

|d̂cross(K)− dcross(K)| ≤ β · dcross(K),

with high probability.

Proof. Since dcross(K) = |E+(K, V \ K)|+ 2|E−(K)| ≥ β|K|, we know that |E+(K, V \ K)| ≥
1
2 β|K| or |E−(K)| ≥ 1

4 β|K|. We will assume that |E+(K, V \ K)| ≥ 1
2 β|K|. The case where

|E−(K)| ≥ 1
4 β|K| is symmetric. If |E−(K)| ≥ β2|K|, then the bound follows from Claim 38

and Claim 39. Otherwise, with high probability,

|d̂cross(K)− dcross(K)| ≤ |X − |E+(K, V \ K)||+ 2|Y − |E−(K)||

≤
β

4
|E+(K, V \ K)|+ 8β2|K|

≤ β · dcross(K).

♦

39

Claim 41. If dcross(K) ≤ β|K| then d̂cross(K) ≤ 6β|K| with hight probability.

Proof. Since dcross(K) = |E+(K, V \ K)|+ 2|E−(K)| ≤ β|K|, we know that |E+(K, V \ K)| ≤
β|K| and |E−(K)| ≤ 1

2 β|K|. Thus, with high probability, X ≤ 3β|K| and Y ≤ 3
2 β|K|. Hence,

d̂cross(K) = X + 2Y ≤ 6β|K| ♦

So far we have shown that we can obtain an estimate d̂cross(K) such that

• if dcross(K) ≥ β|K| then d̂cross(K) concentrates with high probability,

• and if dcross(K) ≤ β|K| then d̂cross(K) ≤ 6β|K| with high probability.

To finish the proof, we need to show that if the estimate is small then K is a cluster in the
optimal solution and on the other hand, if the estimate is large then it concentrates.

Claim 42. If d̂cross(K) ≤ 6β|K|, then K is a cluster in the optimal solution.

Proof. In the case where dcross(K) ≥ 12β|K|, we know that d̂cross(K) ≥ (1 − β)12β|K| >
6β|K| with high probability. Thus, dcross(K) < 12β|K| with high probability since we assume
d̂cross(K) ≤ 6β|K|. In that case, however, by Lemma 8,

12β|K| > dcross(K) ≥ Ω(ε3dadm(K)).

In particular, for a small enough β, dadm(K) < |K|. This implies that
⋂

v∈K Nadm(v) = ∅.
Thus, K is a cluster in OPT. ♦

Claim 43. If d̂cross(K) > 6β|K|, then with hight probability

(1− β)dcross(K) ≤ d̂cross(K) ≤ (1 + β)dcross(K).

Proof. In the case where dcross(K) ≤ β|K|, we know that d̂cross(K) ≤ 6β|K| with high proba-
bility. Thus, dcross(K) ≥ β|K| with high probability since we assume d̂cross(K) > 6β|K|. To
finish the proof, remember that

(1− β)dcross(K) ≤ d̂cross(K) ≤ (1 + β)dcross(K)

with high probability if dcross(K) ≥ β|K|. ♦

Note that, based on Lemma 37, if dcross(v) is too small, then we make K(v) a cluster
and never consider it in cluster LP. For any K(v) that we do consider, we can assume that
dcross(K) = Ω(poly(1/ε)|K|).

7.2 Approximate Ncand

The next question is the construction of Ncand. In Section 5, we defined the candidate set as
the intersection of all admissible neighbors. However, it is again impossible to compute such
a candidate set exactly in Õ(n) time. Instead, we must relax the definition of the candidate
set in a way that does not affect the validity of other proofs.

Lemma 44. Given a vertex r that is part of a non-singleton atom K(r). We can find a set D̂(r) ⊆
Nadm(r) in time Õ(d(r)) such that

|D̂(r)| ≤
2 · dadm(K)

|K|

with hight probability.

40

Proof. We will sample s = log n vertices v1, . . . , vs from K(r) uniformly at random. Let u be
the vertex that minimizes dadm(u) among the vertices v1, . . . vs. We set D̂(r) = Nadm(u) ∩
Nadm(r). Observe that

Ev∼K [dadm(v)] =
dadm(K)

K
.

Thus, by Markov’s inequality, dadm(v1) ≤
2·dadm(K)

K with probability at least 1/2. Thus, after

s = log n repetitions there will be a vertex v among v1, . . . vs such that dadm(v) ≤ 2·dadm(K)
K

with high probability. In particular,

|D̂(r)| ≤ dadm(v) ≤
2 · dadm(K)

|K|
.

Lemma 19 and Lemma 25 still hold true for the approximate N̂cand := K(r) ∪ D̂(r) where
D̂(r) is the estimate from Lemma 44.

Lemma 45. For any r ∈ V, if v ∈ N̂cand(r), then |N̂cand(r)| = O(ε−4d(v)).

The proof for Lemma 45 is the same as for Lemma 19 since N̂cand ⊆ Nadm(r) remains true
for the estimate.

Lemma 46. For any vertex r and any ε-large cluster C such that K(r) ⊆ C ⊆ N̂cand(r), we have

|D̂(r)| · |N̂cand(r)| = O(ε−8dadm(C)).

Proof. Fix α = ε8. We will distinguish two cases.

1. |K(r)| ≥ α|N̂cand(r)|. In this case, we can show the required inequality immediately
because the estimate satisfies |K(r)| · |D̂(r)| ≤ 2dadm(K(r)). In particular,

dadm(C) ≥ dadm(K(r)) ≥
1

2
|K(r)| · |D̂(r)| ≥

α

2
|N̂cand(r)| · |D̂(r)|.

2. |K(r)| ≤ α|N̂cand(r)|. We have by definition of N̂cand that |N̂cand(r)| ≤ |K(r)|+ |Nadm(r)| =
O(ε−3d(r)). Since C is ε-large, |C| ≥ εd(r) ≥ Ω(ε4|Ncand(r)|)

dadm(C) ≥ dadm(C \ K(r))

≥ (|C| − |K(r)|) · |C|

≥ Ω((ε4|N̂cand(r)− |K(r)|) · ε4N̂cand(r))

≥ Ω((ε4(ε4 − α)|N̂cand(r)|
2))

≥ Ω(ε8|N̂cand(r)|
2).

7.3 Estimate the cost of a cluster T

We are given a vertex r and a cluster T ⊆ N̂cand(r) that contains at most one non-singleton
atom K := K(r). We want to find a good estimate of the cost(T). If T doesn’t contains a
non-singleton atom K, we will define K = ∅. We can write the cost of the cluster T as

cost(T) = cost(K) + ∆(T).

41

Here, ∆(T) is the change in cost when adding the missing vertices from T \ K to K. We can
write ∆(T) as the sum over the individual contributions of the vertices in T \ K,

∆(T) = ∑
v∈T\K

∆(T, v).

where ∆(T, v) is given as

∆(T, v) =
d+(v) + d−(v, T) + d−(v, K)− d+(v, T)− d+(v, K)

2

We already have a good estimate for cost(K) = dcross(K) by Lemma 37. We can also obtain a
good estimate for ∆(T).

Lemma 47. For any small enough constant β > 0, given a vertex r and a cluster T ⊆ N̂cand(r) that
contains at most one non-singleton atom K := K(r). Assume there exists an ε-large cluster C with
K(r) ⊆ C ⊆ N̂cand(r). We can find an estimate ∆̂(T) in time Õ(d(r)ε20/β) such that,

|∆̂(T)− ∆(T)| ≤ β ·min{dadm(C), dcross(T \ K)}

with hight probability.

Proof. To estimate ∆(T) we sample s = ε−20β−2 log n vertices v1, . . . , vs from T \K uniformly
at random. We set the estimate to be

∆̂(T) =
|T \ K|

s

s

∑
i=1

∆(T, vi).

Note that the estimator is unbiased,

E[∆̂(T)] =
|T \ K|

s

s

∑
i=1

E[∆(T, vi)] = ∑
v∈T\K

∆(T, v) = ∆(T).

Observe that |∆(T, v)| ≤ d(v) + |T| ≤ d(v) + |N̂cand(r)| = O(ε−2|N̂cand(r)|). Here, we used
that the ε-large cluster C is a subset of N̂cand(r), in particular, |N̂cand(r)| ≥ |C| ≥ εd(r). By
Hoeffdings inequality,

Pr
[∣∣s · ∆̂(T)− s · ∆(T)

∣∣ ≥ s · ε8β · |N̂cand(r)| · |D̂(r)|
]
≤ 2 exp

(
−Ω

(
s2ε16β2 · |N̂cand(r)|

2 · |D̂(r)|2

s · ε−4|N̂cand(r)|2 · |C \ K|2

))

≤ 2 exp
(
−Ω(s · ε20β2)

)

= O

(
1

n2

)

The last inequality holds since T \K ⊆ D̂(r). Remember that |N̂cand(r)| · |D̂(r)| = O(ε−8dadm(C))
by Lemma 46.
Similar, |∆(C, v)| ≤ d(v) + |C| ≤ d(v) + |N̂cand(r)| = O(ε−3d(r)) by Lemma 45. Note that
dcross(v) = d(v) = Ω(εd(r)) for all v ∈ T \ K. Thus, dcross(T \ K) = Ω(|T \ K| · εd(r)) By
Hoeffdings inequality,

Pr
[∣∣s · ∆̂(T)− s · ∆(T)

∣∣ ≥ s · β · dcross(T \ K)
]
≤ 2 exp

(
−

s2β2d2
cross(T \ K)

s · ε−6 · d2(r) · |T \ K|2

)

≤ 2 exp

(
−Ω

(
s · |T \ K|2 · β2 · ε2 · d2(r)

|T \ K|2 · ε−6d2(r)

))

= O

(
1

n2

)
.

42

Now, we are ready to show that we can combine d̂cross(K) and ∆̂(T) to get a good estimate
for ĉost(T).

Lemma 48. For any small enough constant β > 0, given a vertex r and a cluster T ⊆ N̂cand(r)
that contains at most one non-singleton atom K := K(r), we can find an estimate ĉost(T) in time
Õ(d(r)) such that,

|ĉost(T)− cost(T)| ≤ β · dcross(T)

with hight probability.

Proof. By Lemma 37 and Lemma 47, we can obtain estimates d̂cross(K) and ∆̂(T) respectively.
We will set ˆcost(T) = d̂cross(K) + ∆̂(T). We have by the guarantees provided,

|ĉost(T)− cost(T)| ≤ |d̂cross(K)− dcross(K)|+ |∆̂(T)− ∆(T)|

≤ β · (dcross(K) + dcross(T \ K))

= β · dcross(T).

7.4 Finding one small ratio cluster in sublinear time

Lemma 49. Suppose we are given a graph G = (V, E), vertex weights p̂, a target ratio R, a vertex r
and the set of vertices Nadm(r).

(i) Assume there exists a cluster C be an ε-large cluster with K(r) ⊆ C ⊆ Ncand(r) such that
cover(C) + γ2dadm(C) ≤ R · p̂(C).

(ii) Assume that cover({v}) > R · p̂({v}) for all v ∈ C.

Then, with high probability, in time Õ(d(r)), we can find a cluster Cr ⊆ Ncand(r) such that,

cover(Cr) ≤ R · p̂(Cr).

Moreover, Cr does not split atoms and contains exactly one non-singleton atom K(r) ⊆ Cr iff K(r) is
a non-singleton atom.

Algorithm 7 GenerateClusterBySampling(G, Nadm(r), N̂cand(r), w, r, R)

1: Input: The graph G, K(r), Nadm(r), N̂cand(r), w, r, ratio R.
2: Output: A small ratio cluster T̂ if r satisfies Assumption (i) from Lemma 18.
3: Repeat the following steps O(log n) times.
4: for i from 1 to η do

5: Uniformly sample Θ(η4γ−2ε−8) vertices from N̂cand(r) with replacement.
6: Let the sample set be Ai. {Ai may contain some element multiple times.}
7: end for

8: D̂(r)← N̂cand(r) \ K(r)
9: T ← ∅

10: for every (S1, S2, ..., Sη) ⊂ (A1, A2, ..., Aη) such that |Si| ≤ η, where i ∈ [η] do

11: for every (t̃1, t̃2, ..., t̃η) ∈ (L(r), L(r), ...L(r)), where t̃j ∈ L(r) for j ∈ [η] do

12: Add T ← GenerateCluster(r, D(r), S1, . . . , Sη, t̃1, . . . , t̃η) to T .
13: end for

14: end for

15: Compute the estimate ∆̂(T) for each T ∈ T according to Lemma 47.
16: return T ∈ T that minimizes ∆̂(T).

43

Algorithm 8 GenerateCluster(r, D̂(r), S1, . . . , Sη, t̃1, . . . , t̃η)

1: T ← K(r), T̂1 ← K(r)
2: Let D1

r , . . . , D
η
r be an arbitrary partition of the vertices of D̂(r) into equal-size parts

3: for all i = 1, . . . , η do
4: for all v ∈ Di

r do

5: if EstMarg(Si, t̃i, v)+6η−1|N̂cand(r)| ≤ w(v) then

6: T ← T ∪ {v}
7: end if

8: end for

9: T̂i+1 ← T
10: end for

Proof. The proof is almost identical to that of Lemma 18. The only difference is that we use
∆̂(T) to choose T. From Lemma 47, we know that the estimation introduces at most an error
of O(β · dadm(C)).

The first requirement of the lemma provides a slackness of γ2dadm(C). As long as we set
β = O(γ2), the estimation error remains within the allowed slackness.

7.5 Determine the correct guess R of the optimal cost

Our final challenge is to determine the best solution z among the solutions we computed for
each guess R. Since we iterate over different granularities of R in the range [1, n2], we know
that one of these values satisfies R ∈ [cover(OPT), (1 + γ)cover(OPT)]. Thus, we know that
for this guess R, we will compute a solution z with small cost. To determine the this solution
(or any other with a smaller cost), we will use Lemma 48 to estimate the cost. After applying
Algorithm 1, we obtain a solution {zS}, where each nonzero zS is at least some constant. We
can estimate cost(S) for each nonzero zS, and since each node appears in only a constant
number of sets S, the total running time for estimating all cost(S) values is Õ(n).

On the other hand, each node contributes to the estimation error of β · dcross(v), leading
to a total error of β · dcross(V). As long as β is a sufficiently small constant, we can determine
a solution z that is a good approximation.

8 MPC Implementation

In this section, we present an algorithm to solve cluster LP in the MPC model. Our goal is to
establish the following theorem for the MPC model.

Theorem 1 (Efficient cluster LP). Let ε, δ > 0 be small enough constants and let OPT be the
cost of the optimum solution to the given Correlation Clustering instance. Then there is a small
∆ = poly(ε) such that the following statement holds. One can output a solution (zS)S⊆V to the
cluster LP with obj(x) ≤ (1 + ε)OPT in expectation, described using a list of non-zero coordinates
such that each coordinate of z is either 0 or at least ∆. In the various models, the respective procedure
has the following attributes.

• (Sublinear model) The running time to compute z is Õ(2poly(1/ε)n).

• (MPC model) It takes 2poly(1/ε) rounds with O(nδ) memory per machine and total memory
Õ(poly(1

ε)m), or takes poly(1
ε) rounds with O(nδ) memory per machine and total memory

Õ(2poly(1/ε)m).

44

While Algorithm 2 is already well-parallelized and runs in O
(

log(1/γ)
γ4

)
rounds, the algo-

rithm for finding a disjoint family of clusters is not well-parallelized. In Algorithm 6, clusters
are identified sequentially and added one by one to the final output set F . While the run-
ning time is efficient, the approach lacks parallelism. To address this, we need a method that
selects multiple good ratio clusters Cu simultaneously. The MPC algorithm is presented in
Algorithm 9.

Algorithm Description Algorithm 9 first removes all nodes whose ratio is either too large
or too small. For nodes with a large ratio, we add them to F (Line 3), and for nodes with a
small ratio, we remove them by setting their q̂ values to 0 (Line 4).

Next, we attempt to find a disjoint set of clusters Cu such that, in each round, the sum
of their p-values is sufficiently large. This set can be found with constant probability, so we
repeat this process for Θ(log n) rounds (Line 24).

In each round, we add a cluster center to U with probability proportional to its degree.
Thus, for each cluster in the optimal solution, at least one node is chosen into U. We then
consider the candidate sets of these chosen nodes: if a node appears in the candidate sets of
two chosen nodes, we remove it in this round by setting its p̂ value to 0. For each chosen
node, as long as it retains enough fractional modes that have not been removed, we apply
Lemma 18 to find a good ratio cluster. We set the parameter as γ′ = Θ(γ4ε5).

Algorithm 9 MPC Algorithm to find the family F

1: Let R be the guess for cover(OPT) such that R ∈ [cover(OPT), (1 + γ
2)cover(OPT)).

2: q̂← p,F ← ∅

3: for all v ∈ V do

4: If cover(K(v))
p(K(v))

≤ (1 + 6γ) R, add K(v) to F and set q̂w = 0 for all w ∈ K(v).

5: If pv ≤
γdcross(v)
4dcross(V)

, set q̂w = 0 for all w ∈ K(v).

6: end for

7: while p(F) ≤ γ do
8: for t = 1, . . . , Θ(log n/(ε5γ′)) do

9: p̂← q̂,Ft ← ∅

10: p̂v ← 0, for all nodes v in F

11: Add each vertex v with probability ε4γ′

24d(v) to U.

12: Mark all nodes in D(u), for every u ∈ U.
13: for all u ∈ U do

14: Let Remove(u) = {w ∈ D(u) | w gets more than one mark}
15: If q̂(Remove(u)) ≥ γ′q̂(D(u)), then remove u from U.
16: set p̂w ← 0 for all w ∈ Remove(u).
17: end for

18: Let Ũ be the U set.
19: for u ∈ Ũ do
20: Find a good ratio cluster Cu such that K(u) ⊆ Cu ⊆ Nadm(u) with vertex weights

p̂ > 0 and target ratio (1 + 5γ)R (Lemma 18).
21: add Cu to Ft

22: end for

23: end for

24: TMPC ← argmaxt p(Ft)
25: add FTMPC

to F and sets q̂v = 0 for all v ∈ FTMPC

26: end while

27: return F

45

8.1 Approximate Ratio of Algorithm 9

Our main lemma regarding approximate ratio is given as follows,

Lemma 50. Given vertex weights pv > 0, Algorithm 9 finds a family F = {S1, S2, ..., Sl | Si ⊆ V}
such that,

1. for any distinct S, T ∈ F , S ∩ T = ∅,

2.
cover(F)

p(F) ≤ (1 + 8γ)cover(OPT),

3. p(F) is at least γ,

4. no S ∈ F splits an atom, i.e. K(v) ⊆ S for all vertices v ∈ S.

Proof. First, observe that Property 3 holds due to the condition in the while loop. Property 2
holds because all small-ratio clusters {Cv}v∈U do not split atoms.

Next, we prove that the family F consists of disjoint sets. Note that in each round, when
we consider the candidate set, if a node appears in two candidate sets, we set its p̂ value to
zero, ensuring that it is not added to the final cluster.

It remains to bound the ratio cover(F)
p(F)

, which follows directly from Lemma 18.

Now, we only need to show that Algorithm 9 terminates.

8.2 Number of Iterations of Algorithm 9

In this section, we show that the for loop (Line 7 to Line 24) terminates in O(poly(1/ε))
rounds. More precisely, we prove the following:

Lemma 51. Consider one round of execution of Algorithm 9 from Line 7 to Line 24. Then, with high
probability, we have

p(FTMPC
) = Ω(γ10ε14).

Consequently, the while loop (Line 6) will be executed at most O(1/(γ10ε14)) rounds with high
probability.

We start our proof by showing that each round for any cluster C ∈ OPT, with constant
probability, we will add at least one node to U and if C contains a non-singleton atom, we
will include at least one node from the non-singleton atom with constant probability.

Claim 52. For each cluster C ∈ OPT with |C| ≥ 2, we have C ∩ Ũ 6= ∅ with probability at least
Ω(ε5γ′). Moreover, if there exists a non-singleton atom K ⊆ C then K ∩ Ũ 6= ∅ with probability at
least Ω(ε5γ′).

Proof. Recall the (K, Eadm) is ε-similar preclustering. Thus, for any non-singleton atom K we
have |K| ≥ d(v)/2 for each v ∈ K. On the other hand, recall that OPT is ε-large cluster, so
|C| ≥ εd(v), and |C| ≤ dadm(v) + |K(v)| ≤ 3ε−3d(v).

At line 11, we will add node u to U with probability ε4γ′

24d(u) . Then, at line 14, we will

remove the node from U if γ′ fractional of q̂(D(u)) can be considered in other candidate sets.
For a given node u ∈ C, let Xu be the indicator variable that u is the only node in C that is
added to U at Line 11 and is still in Ũ after line 14. Let Au be the indicator variable that u is
the only node in C that is added to U at Line 11 and Bu be the total p̂ value that are in the
Remove(u) set. so

Pr[Xu = 1] = Pr[Au = 1∩ Bu < γ′ p̂(D(u))]

= Pr[Bu < γ′ p̂(D(u)) | Au = 1] · Pr[Au = 1]

46

For Au, we know that only u is added to U, so

Pr[Au = 1] =
ε4γ′

24d(u) ∏
v∈C\{u}

(
1−

ε4γ′

24d(v)

)

≥
ε4γ′

24ε−1|C|

(
1−

ε4γ′

8|C|ε3

)|C|
≥

ε5γ′

48|C|

The first inequality is because ε3|C|/3 ≤ d(v) ≤ ε−1|C|. Now condition on Au = 1, we
calculate the expected value of Bu,

E[Bu | Au = 1] ≤ ∑
v∈D(u)

p̂v ∑
w∈Nadm(v)

ε4γ′

24d(w)
≤ ∑

v∈D(u)

p̂v ∑
w∈Nadm(v)

ε4γ′

12εd(v)

≤ ∑
v∈D(u)

p̂v · dadm(v)
ε4γ′

12εd(v)
≤ ∑

v∈D(u)

p̂v · 2ε−3d(v)
ε4γ′

12εd(v)

≤ ∑
v∈D(u)

γ′ p̂v

6
≤ γ′ p̂(D(u))/3

Then by markov’s inequality, we have

Pr[Bu ≥ γ′ p̂(D(u)) | Au = 1] ≤
1

2

Combining these two points together, we have

Pr[Xu = 1] ≥
ε5γ′

96|C|

and C ∩U 6= ∅ with probability at least

∑
u∈C

Pr[Xu = 1] ≥ |C| ·
ε5γ′

96|C|
= Ω(ε5γ′)

The proof for K ∩ Ũ 6= ∅ is almost identical, so we omit the details here. However, we
note that whenever K ∩ Ũ 6= ∅, we always have |K ∩ Ũ| = 1.

This follows from the fact that if |K ∩ U| ≥ 2, then all nodes in D(K) will receive two
marks, causing D(K) to be added to the Remove set, which in turn removes K ∩U from U.

♦

Consider one iteration Line 7 of Algorithm 9, let

C∗≤(1+4γ)R = {C∗ ∈ OPT |
cover(C∗) + γ2dadm(C∗)

q̂(C∗)
≤ (1 + 4γ)R}

be the set of clusters from optimal clustering such that the ratio is at most (1 + 4γ)R. We
will first show that C∗≤(1+4γ)R has a large q̂ value.

Lemma 53. Consider one iteration of Algorithm 9, if p(F) ≤ γ, then we have

q̂(C∗≤(1+4γ)R) ≥ γ

47

Proof. Notice that the algorithm will set some q̂v to 0 without adding u to F , let

Small = {v ∈ q̂v is set to 0 at line 4 in Algorithm 9}

We have p(Small) ≤ ∑v∈V
γdcross(v)

16dcross(V)
≤ γ/4. Based on the assumption of p(F) ≤ γ, we have

q̂(V) = p(V)− p(F)− p(Small) ≥ 1− 1.25γ. Thus,

(1 + 2.5γ)R ≥
1 + γ

1− 1.25γ
R ≥

(1 + γ)cover(OPT)

q̂(V)

≥
cover(OPT) + γ2|Eadm|

q̂(V)
=

∑C∈OPT(cover(C) + γ2dadm(C))

∑C∈OPT q̂(C)
.

For the second inequality, we use that γ cover(OPT) ≥ γ cost(OPT) ≥ γ2|Eadm| because
of the preclustering (Theorem 7). On the other hand, if q̂(C≤(1+4γ)R) < γ, then consider
C ∈ OPT whose ratio is at least (1 + 4γ)R, we have

∑C∈OPT(cover(C) + γ2dadm(C))

∑C∈OPT q̂(C)

≥
∑C∈OPT\C≤(1+4γ)R

(cover(C) + γ2dadm(C))

∑C∈OPT q̂(C)

≥
∑C∈OPT\C≤(1+4γ)R

(cover(C) + γ2dadm(C))

∑C∈OPT q̂(C)

≥
∑C∈OPT\C≤(1+4γ)R

(cover(C) + γ2dadm(C))

∑C∈OPT\C≤(1+4γ)R
q̂(C)

·
∑C∈OPT\C≤(1+4γ)R

q̂(C)

∑C∈OPT q̂(C)

≥ (1 + 4γ)R ·
(
1−

γ

1− 1.5γ

)
> (1 + 2.5γ)R

which contradicts to the fact that the total ratio is at most (1 + 2.5γ)R. So, we conclude that
q̂(C∗≤(1+4γ)R

) ≥ γ.

Consider one iteration Line 7 of Algorithm 9, let

C≤(1+4γ)R = {C ∈ C∗≤(1+4γ)R | C ∩ Ũ 6= ∅}

be the set of good ratio cluster such that at least one of its node is chosen into Ũ, we can show
that

Lemma 54. For every C∗ ∈ C≤(1+4γ)R, we have

p̂(C∗) ≥ (1−
γ

2
)q̂(C∗)

Moreover, we have

Pr[p̂(C≤(1+4γ)R) = Ω(ε5γ′γ)] = Ω(ε5γ′)

Proof. when we set up p̂, we first copy q̂ to p̂ value. Then, we might set some p̂ value to 0
if the nodes have two chosen neighbor. So, to show that p̂(C∗) ≥ (1− γ)q̂(C∗), we need to
show that the removed nodes contributes to at most γ fractional weight to C∗.

For each C∗ ∈ C≤(1+4γ)R, let u ∈ C∗ ∩ Ũ be the node in Ũ. Based on Claim 33, we know

that |C∗| = 1 or |C∗| ≥ γ3d(u). The first case is impossible since we will set its p̂ value to 0

48

and we will never consider it in C≤(1+4γ)R. For the second case, note that we remove at most
γ′ fractional q̂ from D(u), we will give an upper bound of this value.

Recall that based on lemma 35, we know that for any node v ∈ C∗ ⊂ Ncand(u), we have

q̂v = O

(
ε−1d(u)

dcross(V)

)

so the upper bound q̂(D(u)) is at most

q̂(D(u)) = O

(
ε−1d(u) · |D(u)|

dcross(V)

)

based on Claim 33, we know that C∗ contains at least γ3d(u) vertices with positive p̂ value,
for each vertex in C∗, we have

q̂v = Ω

(
γε4|D(u)|

dcross(V)

)

so, the lower bound p̂ value for C∗ is at least

q̂(C∗) = Ω

(
γ4ε4|D(u)| · d(u)

dcross(V)

)

For any node u ∈ Ũ, we remove at most γ′ fractional of its q̂(D(u)) value, as long as γ′ =
Ω(γ5ε4), we have

p̂(C∗) ≥ (1−
γ

2
)q̂(C∗)

Now for each C∗ ∈ C∗≤(1+4γ)R, based on Claim 52, we know that with probability at least

Ω(ε5γ′), C∗ ∩ Ũ 6= ∅ and C∗ ∈ C≤(1+4γ)R, so we have

E[q̂(C≤(1+4γ)R)] = Ω(ε5γ′q̂(C∗≤(1+4γ)R))

Note that q̂(C≤(1+4γ)R) ≤ q̂(C∗≤(1+4γ)R
), by the reverse markov inequality, we have

Pr[q̂(C≤(1+4γ)R) = Ω(ε5γ′q(C∗≤(1+4γ)R))] = Ω(ε5γ′)

By Lemma 25, we know that q̂(C∗≤(1+4γ)R) ≥ γ, so we have

Pr[q̂(C≤(1+4γ)R) = Ω(ε5γ′γ)] = Ω(ε5γ′)

For each C∗ ∈ C≤(1+4γ)R, we have p̂(C∗) ≥ (1− γ)q̂(C∗), so

Pr[p̂(C≤(1+4γ)R) = Ω(ε5γ′γ)] = Ω(ε5γ′)

From the above lemma, we know that for any C∗ ∈ C≤(1+4γ)R, at least one node u ∈ C∗

will be fed into Lemma 18. Our final goal is to show that in each round, we cover a set of
good clusters with sufficient p-value.

Next, we show that the cluster returned by Lemma 18 covers a constant fraction of the
p̂-value. This is formally stated in the following lemma.

49

Lemma 55. For every C∗ ∈ C≤(1+4γ)R, let u ∈ C∗ ∩ Ũ be the node in Ũ and Cu be the cluster
returned by Lemma 18, then we have

p̂(Cu) = Ω(γ4ε5 p̂(C∗))

Proof. Note that for any C∗ ∈ C≤(1+4γ)R, we have

cover(C∗) + γ2dadm(C∗)

p̂(C∗)
≤

cover(C∗) + γ2dadm(C∗)

(1− γ)q̂(C∗)

≤
1 + 4γ

1− γ/2
R ≤ (1 + 5γ)R

This satisfy the input of Lemma 18. So we can find a cluster Cu with ratio at most (1 + 5γ)R.
If p̂(D(u)) ≤ p̂(Ncand(u))/2, based on Lemma 18, we know that K(u) ⊂ Cu is alwasy

added to Cu, so p̂(Cu) ≥ p̂(K(u)) ≥ p̂(Ncand(u))/2 ≥ p̂(C∗)/2.
On the other hand, if p̂(D(u)) ≥ p̂(Ncand(u))/2. Based on Lemma 35, the upper bound

p̂(D(u)) is at most

p̂(D(u)) = O

(
ε−1d(u) · |D(u)|

dcross(V)

)

and the upper bound for p̂(C∗) is

p̂(C∗) ≤ p(Ncand(u)) ≤ 2p̂(D(u)) = O

(
ε−1d(u) · |D(u)|

dcross(V)

)

By Claim 33, we know that Cu contains at least γ3d(u) vertices with p̂ > 0. Based on
Lemma 35, for each vertex in Cu, we have

p̂v = Ω

(
γε4|D(u)|

dcross(V)

)

so, the lower bound p̂ value for Cu is at least

p̂(Cu) = Ω

(
γ4ε4|D(u)| · d(u)

dcross(V)

)

so we have p̂(Cu) = Ω(γ4ε5 p̂(C∗))

Proof of Lemma 51. Note that, based on Lemma 54, for each iteration of the for loop at Line 7,
we include the set C≤(1+4γ)R with total p̂ value at least Ω(ε5γ′γ) = Ω(ε9γ6) with probability

at least Ω(ε5γ′).
We repeat the for loop for Θ(log n/(ε5γ′)) iterations. With high probability, we will find

a set C≤(1+4γ)R with total p value at least Ω(ε5γ′γ) = Ω(ε9γ6).
Now, from Lemma 55, for each C∗ ∈ C≤(1+4γ)R, we can find a sufficiently large set Cu.

Thus, FTMPC
can cover at least Ω(γ10ε14) of the p value.

8.3 Wrap-Up: Proof of MPC Algorithm for Theorem 1

Now we are ready to show the key theorem for this section.

50

Proof of Theorem 1. We can obtain the preclustering (K, Eadm) in time Õ(n) by Theorem 7. We
now argue that this algorithm can be implemented in the MPC model.

In Algorithm 1, we first compute dcross. This can be done given K by appending the
cluster label to each edge to indicate whether the endpoints belong to the same cluster in
the preclustering. Then, computing dcross only requires counting the edges that cross dif-
ferent clusters in K. This step can be implemented using sorting. We will discuss how to
solve covering cluster LP later.

Finally, we need to apply Lemma 11 to compute the solution for cluster LP. Implementing
Lemma 11 in the MPC model is somewhat tricky, but the key observation is that each zS ≥

1
TMW

. Therefore, for each node u, at most O(TMW) clusters with positive zS values will cover
u. For each node, we collect all clusters with positive zS values. If the final sum ∑S∋u zS > 1,
we sort zS for u in any order and mark those zS as ”greater than 1 for u” for later clusters.
Each S then collects these marked clusters and removes them from itself. In this process, for
each non-singleton atom, we perform this operation only once for a representative, allowing
S to remove the non-singleton atoms. Since at most O(TMW) clusters cover u, this process
requires at most O(TMW · n) total space.

Algorithm 2 and Algorithm 9 are naturally parallelized, requiring only O(poly(1/ε))
rounds for execution. From Claim 32, we know that with high probability, each vertex is
contained in at most O(log n) clusters from {Cu}u∈U , so storing the candidate set Ncand for
U requires at most O(n log n) space. We can then distribute all edge information to execute
Lemma 18 for each u ∈ U.

The more challenging part is applying Lemma 18. For each Ncand(u), we need to sample
O(poly(1/ε)) nodes and enumerate all possible subsets of the sampled nodes. There are two
methods for performing this enumeration:

1. Store all subsets of the sampled nodes. For each Ncand(u), this requires Õ(2poly(1/ε)|Ncand(u)|)
space to store the edge relations between the sampled nodes and all other nodes. Once
these relations are recorded, Algorithm 5 can determine whether to add a node to T.
This method requires only O(1) rounds but consumes a total space of Õ(2poly(1/ε)m).

2. Enumerate all possible subsets one by one. This avoids the need to record edge in-
formation for the sampled nodes, but it requires an additional O(2poly(1/ε)) rounds for
each iteration.

Combining all these points, we conclude that we can either: - Spend 2poly(1/ε) rounds with
O(nδ) memory per machine and total memory Õ(poly(1/ε)m), or - Spend poly(1/ε) rounds
with O(nδ) memory per machine and total memory Õ(2poly(1/ε)m) to solve cluster LP.

9 Rounding Algorithms

In this section, we present fast rounding algorithms for the cluster LP. We begin by providing
intuition behind the rounding algorithms and by explaining the rounding techniques used
in [CCL+24]. In Section 9.1, we show how to implement the rounding in nearly linear time.
Then, in Section 9.2, we demonstrate how to perform rounding in the sublinear model.

Note that we have already obtained a solution to cluster LP. In [CCL+24], the authors
showed how to round a cluster LP solution to an integral solution. The approximation ratio
is given by the following theorem.

Theorem 56. [CCL+24] There exists an algorithm that, given a feasible solution for the cluster LP,
produces a clustering whose objective value is at most 1.437 times that of the cluster LP solution.

51

To be more precise, the algorithm from Theorem 56 consists of two different rounding
algorithms, one is executed with probability p = 1.437

2 the other with probability 1− p. The
two algorithms in question are the cluster-based rounding (Algorithm 10) and the pivot-
based rounding (Algorithm 11). We need to show that we can implement both algorithms in
nearly linear time.

Algorithm Description. The cluster-based rounding algorithm (Algorithm 10) selects clus-
ters S based on their zS values. In each round, we randomly choose a cluster S with prob-
ability proportional to zS. We then add all nodes from S that are still in the graph to a new
cluster and remove those nodes from the graph. This process is repeated until the graph is
empty.

The pivot-based algorithm (Algorithm 11) follows a different approach. Instead of se-
lecting a set directly, at each round, we randomly choose a node u that is still in the graph,
referred to as the pivot. We then form a cluster using this pivot as follows. For each small
+edge (u, v), we include v in the cluster. For the remaining +edges, we apply correlated
rounding, where we randomly choose a set S containing u and include all remaining +edges
if they are in S. For −edges, we use independent rounding, where the probability of adding
a node to the cluster is determined by the distance metric:

1− xuv = ∑
S⊇{u,v}

zS.

The algorithm then removes all nodes that have been clustered in the current round and
repeats the process until the graph is empty.

Algorithm 10 Cluster-Based Rounding

C ← ∅, V ′ ← V
while V ′ 6= ∅ do

randomly choose a cluster S ⊆ V, with probabilities zS

∑S′ zS′

if V ′ ∩ S 6= ∅ then

C ← C ∪ {V ′ ∩ S}, V ′ ← V ′ \ S
end if

end while

return C

Algorithm 11 Pivot-Based Rounding with Threshold 1/3

1: C ← ∅, V ′ ← V
2: while V ′ 6= ∅ do

3: randomly choose a pivot u ∈ V ′

4: C← {v ∈ V ′ ∩ N+(u) : xuv ≤
1
3}

5: for every v ∈ V ′ ∩ N−(u) do
6: independently add v to C with probability 1− xuv

7: end for

8: randomly choose a set S ∋ u, with probabilities zS {We have ∑S∋u zS = 1}
9: C← C ∪ (S ∩V ′ ∩ N+(u)), C ← C ∪ {C}, V ′ ← V ′ \ C

10: end while

11: return C

52

9.1 Nearly Linear Time Rounding Algorithm

Implementation of Cluster-Based Rounding. We are given a solution z to the cluster LP
with cost(z) ≤ (1 + ε)cost(OPT) and |supp(z)| = O(n). Moreover, by Lemma 11, for each
S ∈ supp(z), we have zS ≥ ∆ for some constant ∆.

We will implement Algorithm 10 as follows. For each vertex we sample a random vari-
able kv from an exponential distribution with rate zS. To do this, we sample a value kS for
each set with zS > 0 by sampling a value uniformly at random from pS ∈ (0, 1) and then
setting

kS = ⌊
nc

zS
log

1

pS
⌋,

where c is a fixed constant. Then, for each vertex v, let kv be the smallest kS among sets S that
contain the vertex v. All vertices with the same kv are assigned to the same cluster. Algorithm
12 is equivalent to Algorithm 10. Indeed, let X1, . . . , Xl be exponentially distributed random
variables each with rate ri. The probability that Xi is the minimum among X1, . . . , X1 is equal
to

Pr[Xi = min{X1, . . . , Xl}] =
ri

∑j rj
.

We emphasize that, given the solution from Theorem 1, Algorithm 12 runs in Õ(n) time in
the sublinear model. We conclude with the following lemma for the cluster-based rounding
algorithm:

Lemma 57. Given a solution {zS} to cluster LP such that for each S ∈ supp(z), we have zS ≥ ∆

for some constant ∆. Then, Algorithm 10 runs in Õ(n/∆) time in the sublinear model.

Algorithm 12 Cluster-Based Rounding

for S ∈ S do

kS = ⌊ nc

zs
log 1

ps
⌋, where ps is uniformly chosen from (0, 1)

end for

for v ∈ V do

kv = min{kS | S ∋ v}
end for

Put all nodes with same kv value into same cluster

Implementation of Pivot-Based Rounding. Now we discuss how to implement Algorithm
11 in nearly linear time. Note that each vertex is contained in at most 1

∆
clusters S ∈ supp(z).

Thus a fixed pivot u belongs to at most 1/∆ sets S such that zS > 0. We therefore only
need to consider 1/∆ sets to choose one of these sets according to the respective probability
distribution. Visiting the +edges incident to each pivot requires at most O(m) time over the
course of the algorithm.

For the −edges, the main challenge is listing all −edges from V ∩ N−(u) and then per-
forming independent rounding. Our key observation is that xuv < 1 if and only if there exists
some S such that S contains both u and v and zS > 0. Thus, we only need to iterate over all
vertices in ∪S∋u,zS>0 S.

Since each zS ≥ ∆ for S ∈ supp(z), each node v with xuv < 1 contributes at least 1/∆ to
the LP value. Therefore, there are at most O(m/∆) −edges across all S. Since each −edge is
visited at most once, listing all −edges takes at most O(m/∆) time.

53

Once we process the pivot, we need to update S to remove nodes that have been clus-
tered. Since each nonzero zS > ∆, the total update time is at most O(n/∆).

Combining everything, we obtain the following lemma for pivot-based rounding.

Lemma 58. Given a solution {zS} to cluster LP such that for each S ∈ supp(z), we have zS ≥ ∆

for some constant ∆. Then, Algorithm 11 runs in Õ(m/∆) time.

9.2 Rounding in Sublinear Model

To argue that Algorithm 11 runs in sublinear time, we make the following observation. For
a fixed pivot r, let

Ur =
⋃

S∋r:zS>0

S

i.e., Ur is the set of all vertices that occur together with r in some set in the support of z. If
v 6∈ Ur, then xuv = 1, meaning Algorithm 11 never considers v when r is chosen as the pivot.
Thus, Algorithm 11 only considers Ur for one step of iteration.

Moreover, we can iterate over all S ∋ r with zS > 0 and all v ∈ S in time 1
∆
|Ur| since each

vertex is contained in at most 1
∆

sets S ∈ supp(z). Hence, we can implement one step of the

algorithm in time at most Õ(|Ur|/∆).
On the other hand, for each vertex v ∈ Ur, the probability that it is included in the cluster

of r is at least 1− xrv ≥ ∆. Thus, in expectation, we remove at least ∆|Ur| vertices from the
current graph.

Combining these points, in Algorithm 11, we pay O(1/∆2) for each node in expectation.
Therefore, the final running time is given by the following lemma.

Lemma 59. Given a solution {zS} to cluster LP such that for each S ∈ supp(z), we have zS ≥ ∆

for some constant ∆. Then, Algorithm 11 runs in Õ(n/∆2) time.

Now, we can prove the main theorem regarding the rounding algorithm.

Proof of Theorem 2. The approximation ratio follows from Theorem 56. The runtime of cluster-
based rounding is given in Lemma 57, and the runtime of pivot-based rounding is given in
Lemma 59. Combining these results establishes the main theorem.

Expected Guarantee We highlight one final point regarding general rounding algorithms
in the sublinear model. Typically, a rounding algorithm provides an expected guarantee.
To achieve a high-probability guarantee, we can run the rounding algorithm multiple times
and select the best outcome. However, in the sublinear model, it is unclear how to determine
which output is the best, as computing the clustering cost sublinear time is challenging.

For our rounding algorithm, we achieve a high-probability guarantee. This is because
our rounding algorithm sets an atom as a cluster if its dcross value is very small and never
splits an atom. We can apply Lemma 37 to estimate the cost of the clustering. The estimation
cost is β · dcross(V).

Since dcross(V) = O(1
ε12)OPT, the estimation cost is always small enough compared to the

optimal solution.

References

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: Ranking and clustering. Journal of the ACM, 55(5):1–27, 2008.

54

[AHK+09] Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and
Panayiotis Tsaparas. Generating labels from clicks. In Proceedings of the Second
ACM International Conference on Web Search and Data Mining (WSDM), pages
172–181, 2009.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: A meta-algorithm and applications. Theory of Computing,
8(1):121–164, 2012.

[ARS09] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with
constraints using dedupalog. In Proceedings of the 25th IEEE International Con-
ference on Data Engineering (ICDE), pages 952–963, 2009.

[AW22] Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for cor-
relation clustering via sparse-dense decompositions. In Proceedings of the 13th
Conference on Innovations in Theoretical Computer Science (ITCS), volume 215 of
LIPIcs, pages 10:1–10:20, 2022.

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Ma-
chine learning, 56(1):89–113, 2004.

[BCC+24] Soheil Behnezhad, Moses Charikar, Vincent Cohen-Addad, Alma Ghafari, and
Weiyun Ma. Fully dynamic correlation clustering: Breaking 3-approximation,
2024.

[BCMT22] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-
approximate correlation clustering in constant rounds. In Proceedings of 63rd
Annual IEEE Symposium on Foundations of Computer Science, (FOCS), pages 720–
731, 2022.

[BCMT23] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass
streaming algorithms for correlation clustering. In Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 819–849, 2023.

[BGU13] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correla-
tion clustering. Knowledge and Information Systems, 35(1):1–32, 2013.

[CCL+24] Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman,
and Lukas Vogl. Understanding the cluster linear program for correlation clus-
tering. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC), pages 1605–1616, 2024.

[CGW05] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with
qualitative information. Journal of Computer and System Sciences, 71(3):360–383,
2005.

[CHS24] Nairen Cao, Shang-En Huang, and Hsin-Hao Su. Breaking 3-factor approxi-
mation for correlation clustering in polylogarithmic rounds. In Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024.

[CKP08] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic ap-
proach to webpage segmentation. In Proceedings of the 17th International Confer-
ence on World Wide Web (WWW), pages 377–386, 2008.

55

[CLLN23] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Han-
dling correlated rounding error via preclustering: A 1.73-approximation for
correlation clustering. In Proceedings of the 64rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1082–1104, 2023.

[CLM+21] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-
Fard, Nikos Parotsidis, and Jakub Tarnawski. Correlation clustering in con-
stant many parallel rounds. In Proceedings of the 38th International Conference on
Machine Learning (ICML), pages 2069–2078, 2021.

[CLN22] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation
clustering with Sherali-Adams. In Proceedings of 63rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 651–661, 2022.

[CLP+24] Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel
Thorup, Shuyi Yan, and Hanwen Zhang. Combinatorial correlation cluster-
ing. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC), pages 1617–1628, 2024.

[CMSY15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory
Yaroslavtsev. Near optimal LP rounding algorithm for correlation clustering
on complete and complete k-partite graphs. In Proceedings of the 47th Annual
ACM Symposium on Theory of Computing (STOC), pages 219–228, 2015.

[CSX12] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In
Advances in Neural Information Processing Systems (Neurips), pages 2204–2212,
2012.

[DMM24] Mina Dalirrooyfard, Konstantin Makarychev, and Slobodan Mitrović. Pruned
pivot: correlation clustering algorithm for dynamic, parallel, and local com-
putation models. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

[KCMNT08] Dmitri V. Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-
Turan. Web people search via connection analysis. IEEE Transactions on Knowl-
edge and Data Engineering, 20(11):1550–1565, 2008.

[KYNK14] Sungwoong Kim, Chang D Yoo, Sebastian Nowozin, and Pushmeet Kohli. Im-
age segmentation using higher-order correlation clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(9):1761–1774, 2014.

[MC24] Konstantin Makarychev and Sayak Chakrabarty. Single-pass pivot algorithm
for correlation clustering. Keep it simple! Advances in Neural Information Pro-
cessing Systems (NeurIPS), 36, 2024.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algo-
rithms for fractional packing and covering problems. Mathematics of Operations
Research, 20(2):257–301, 1995.

[YV18] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms
and hardness for single-linkage clustering under ℓp-distances. In Proceedings of
35th International Conference on Machine Learning (ICML), page 5596–5605, 2018.

56

	Introduction
	Our Results
	Technical Overview

	Preclustering
	Computational Models.
	Preclustering

	Multiplicative Weights Update Framework
	Converting cluster LP to covering cluster LP
	The MWU Algorithm

	Finding a Partial Clustering with Small Ratio in Polynomial Time
	Finding One Small Ratio Cluster
	Overview of the Algorithm
	Bounding (C*i + 1) - (C*i)

	Refinements to Reach Nearly Linear Time
	Approximate Ratio of Algorithm 6
	Runtime of Algorithm 6
	Wrap-Up: Proof of Nearly Linear Time Algorithm for cluster LP

	Finding a Partial Clustering with Small Ratio in Sublinear Time
	Compute dcross(v)
	Approximate Ncand
	Estimate the cost of a cluster T
	Finding one small ratio cluster in sublinear time
	Determine the correct guess R of the optimal cost

	MPC Implementation
	Approximate Ratio of Algorithm 9
	Number of Iterations of Algorithm 9
	Wrap-Up: Proof of MPC Algorithm for Theorem 1

	Rounding Algorithms
	Nearly Linear Time Rounding Algorithm
	Rounding in Sublinear Model

